关于零属轨道Gromov-Witten不变量的加权放大公式

IF 1.3 1区 数学 Q1 MATHEMATICS
Bohui Chen, Cheng-Yong Du
{"title":"关于零属轨道Gromov-Witten不变量的加权放大公式","authors":"Bohui Chen, Cheng-Yong Du","doi":"10.1112/S0010437X23007315","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a new approach to prove some weighted-blowup formulae for genus zero orbifold Gromov–Witten invariants. As a consequence, we show the invariance of symplectically rational connectedness with respect to weighted-blowup along positive centers. Furthermore, we use this method to give a new proof to the genus zero relative-orbifold correspondence of Gromov–Witten invariants.","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"159 1","pages":"1833 - 1871"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On weighted-blowup formulae of genus zero orbifold Gromov–Witten invariants\",\"authors\":\"Bohui Chen, Cheng-Yong Du\",\"doi\":\"10.1112/S0010437X23007315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide a new approach to prove some weighted-blowup formulae for genus zero orbifold Gromov–Witten invariants. As a consequence, we show the invariance of symplectically rational connectedness with respect to weighted-blowup along positive centers. Furthermore, we use this method to give a new proof to the genus zero relative-orbifold correspondence of Gromov–Witten invariants.\",\"PeriodicalId\":55232,\"journal\":{\"name\":\"Compositio Mathematica\",\"volume\":\"159 1\",\"pages\":\"1833 - 1871\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compositio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/S0010437X23007315\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/S0010437X23007315","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种证明格零轨道Gromov-Witten不变量的加权爆破公式的新方法。因此,我们证明了沿正中心的加权爆破的辛有理连通性的不变性。此外,我们还利用该方法给出了Gromov-Witten不变量的格零相对轨道对应性的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On weighted-blowup formulae of genus zero orbifold Gromov–Witten invariants
In this paper, we provide a new approach to prove some weighted-blowup formulae for genus zero orbifold Gromov–Witten invariants. As a consequence, we show the invariance of symplectically rational connectedness with respect to weighted-blowup along positive centers. Furthermore, we use this method to give a new proof to the genus zero relative-orbifold correspondence of Gromov–Witten invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信