(2+1)维Sawada-Kotera方程的相互作用解

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yong Meng
{"title":"(2+1)维Sawada-Kotera方程的相互作用解","authors":"Yong Meng","doi":"10.1155/2023/9472715","DOIUrl":null,"url":null,"abstract":"The N-soliton solution of the (2+1)-dimensional Sawada-Kotera equation is given by using the Hirota bilinear method, and then, the conjugate parameter method and the long-wave limit method are used to get the breather solution and the lump solution, as well as the interaction solution of the elastic collision properties between them. In addition, according to the expression of the lump-type soliton solution and the striped soliton solution, the completely inelastic collision, rebound, absorption, splitting, and other particle characteristics of the two solitons in the interaction process are directly studied with the simulation method, which reveals the laws of physics reflected behind the phenomenon.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interaction Solutions of the (2+1)-Dimensional Sawada-Kotera Equation\",\"authors\":\"Yong Meng\",\"doi\":\"10.1155/2023/9472715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The N-soliton solution of the (2+1)-dimensional Sawada-Kotera equation is given by using the Hirota bilinear method, and then, the conjugate parameter method and the long-wave limit method are used to get the breather solution and the lump solution, as well as the interaction solution of the elastic collision properties between them. In addition, according to the expression of the lump-type soliton solution and the striped soliton solution, the completely inelastic collision, rebound, absorption, splitting, and other particle characteristics of the two solitons in the interaction process are directly studied with the simulation method, which reveals the laws of physics reflected behind the phenomenon.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9472715\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/9472715","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

用Hirota双线性方法给出了(2+1)维Sawada-Kotera方程的N孤子解,然后用共轭参数法和长波极限法得到了通气解和块解,以及它们之间弹性碰撞性质的相互作用解。此外,根据块状孤子解和条纹孤子解的表达式,利用模拟方法直接研究了两个孤子在相互作用过程中的完全非弹性碰撞、反弹、吸收、分裂等粒子特性,揭示了这一现象背后反映的物理规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interaction Solutions of the (2+1)-Dimensional Sawada-Kotera Equation
The N-soliton solution of the (2+1)-dimensional Sawada-Kotera equation is given by using the Hirota bilinear method, and then, the conjugate parameter method and the long-wave limit method are used to get the breather solution and the lump solution, as well as the interaction solution of the elastic collision properties between them. In addition, according to the expression of the lump-type soliton solution and the striped soliton solution, the completely inelastic collision, rebound, absorption, splitting, and other particle characteristics of the two solitons in the interaction process are directly studied with the simulation method, which reveals the laws of physics reflected behind the phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信