{"title":"Cφ和Cφ的数值范围","authors":"J. Clifford, Michael Dabkowski, Alan D. Wiggins","doi":"10.1515/conop-2020-0108","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0108","citationCount":"0","resultStr":"{\"title\":\"The Numerical Range of C*ψ Cφ and Cφ C*ψ\",\"authors\":\"J. Clifford, Michael Dabkowski, Alan D. Wiggins\",\"doi\":\"10.1515/conop-2020-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2020-0108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2020-0108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace.