基于多智能体系统模型的在线订餐配送策略仿真

IF 1.3 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guangyu Zou, Ming Gao, Jiafu Tang, L. Yilmaz
{"title":"基于多智能体系统模型的在线订餐配送策略仿真","authors":"Guangyu Zou, Ming Gao, Jiafu Tang, L. Yilmaz","doi":"10.1080/17477778.2021.2007808","DOIUrl":null,"url":null,"abstract":"ABSTRACT With the rapid development of Online to Offline (O2O) business, millions of transactions each day along with the varying processing time of merchants and the complexity of traffic conditions pose significant challenges to effective and efficient delivery of orders. This paper studies the complex adaptive dynamics of O2O platforms by combining the behaviors of customers, merchants, dispatcher, and couriers in the context of a multi-agent model. Serving as a testbed, the simulation model enables the evaluation of alternative order delivery strategies. Preliminary experimental results show that TSP-based delivery strategy is more efficient than the nearer merchant assignment strategy. As an important property, the larger load capacity of couriers is beneficial to improve the completion rate of orders rather than the completion time. Finally, the experiment using the real road network and the real order data demonstrates the applicability of the proposed multi-agent model of O2O platform in the real scenario.","PeriodicalId":51296,"journal":{"name":"Journal of Simulation","volume":"17 1","pages":"297 - 311"},"PeriodicalIF":1.3000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of online food ordering delivery strategies using multi-agent system models\",\"authors\":\"Guangyu Zou, Ming Gao, Jiafu Tang, L. Yilmaz\",\"doi\":\"10.1080/17477778.2021.2007808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT With the rapid development of Online to Offline (O2O) business, millions of transactions each day along with the varying processing time of merchants and the complexity of traffic conditions pose significant challenges to effective and efficient delivery of orders. This paper studies the complex adaptive dynamics of O2O platforms by combining the behaviors of customers, merchants, dispatcher, and couriers in the context of a multi-agent model. Serving as a testbed, the simulation model enables the evaluation of alternative order delivery strategies. Preliminary experimental results show that TSP-based delivery strategy is more efficient than the nearer merchant assignment strategy. As an important property, the larger load capacity of couriers is beneficial to improve the completion rate of orders rather than the completion time. Finally, the experiment using the real road network and the real order data demonstrates the applicability of the proposed multi-agent model of O2O platform in the real scenario.\",\"PeriodicalId\":51296,\"journal\":{\"name\":\"Journal of Simulation\",\"volume\":\"17 1\",\"pages\":\"297 - 311\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17477778.2021.2007808\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17477778.2021.2007808","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

随着线上到线下(O2O)业务的快速发展,每天数以百万计的交易,以及商家处理时间的变化和交通状况的复杂性,对有效和高效地交付订单提出了重大挑战。本文在多智能体模型的背景下,结合顾客、商家、调派员和快递员的行为,研究了O2O平台的复杂自适应动态。作为测试平台,仿真模型可以评估可选的订单交付策略。初步实验结果表明,基于tsp的配送策略比就近配送策略更有效。快递员的一个重要特性是,更大的载货能力有利于提高订单完成率,而不是提高完成时间。最后,利用真实路网和真实订单数据进行实验,验证了所提出的O2O平台多智能体模型在真实场景中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of online food ordering delivery strategies using multi-agent system models
ABSTRACT With the rapid development of Online to Offline (O2O) business, millions of transactions each day along with the varying processing time of merchants and the complexity of traffic conditions pose significant challenges to effective and efficient delivery of orders. This paper studies the complex adaptive dynamics of O2O platforms by combining the behaviors of customers, merchants, dispatcher, and couriers in the context of a multi-agent model. Serving as a testbed, the simulation model enables the evaluation of alternative order delivery strategies. Preliminary experimental results show that TSP-based delivery strategy is more efficient than the nearer merchant assignment strategy. As an important property, the larger load capacity of couriers is beneficial to improve the completion rate of orders rather than the completion time. Finally, the experiment using the real road network and the real order data demonstrates the applicability of the proposed multi-agent model of O2O platform in the real scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Simulation
Journal of Simulation COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
5.70
自引率
16.00%
发文量
42
期刊介绍: Journal of Simulation (JOS) aims to publish both articles and technical notes from researchers and practitioners active in the field of simulation. In JOS, the field of simulation includes the techniques, tools, methods and technologies of the application and the use of discrete-event simulation, agent-based modelling and system dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信