{"title":"佐佐木势空间的曲率补全","authors":"Thomas Franzinetti","doi":"10.5565/publmat6712309","DOIUrl":null,"url":null,"abstract":"Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Curvature of the completion of the space of Sasaki potentials\",\"authors\":\"Thomas Franzinetti\",\"doi\":\"10.5565/publmat6712309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6712309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6712309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Curvature of the completion of the space of Sasaki potentials
Given a compact Sasaki manifold, we endow the space of the Sasaki potentials with an analogue of Mabuchi metric. We show that its metric completion is negatively curved in the sense of Alexandrov.