{"title":"通过体外消化和发酵,评价枯草芽孢杆菌发酵山葵作为功能性食品原料的潜力","authors":"Wai Kit Mok, Yong Xing Tan, W. N. Chen","doi":"10.1080/08905436.2021.1909615","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, in vitro digestion and fermentation was employed to simulate the consumption of fermented okara and hence, evaluate its potential as a functional food ingredient. This is to develop a method of utilizing okara without producing secondary waste. Fermentation increased the amount of soluble dietary fiber by 187%. Bioaccessibility of amino acids, fatty acids, and vitamin K2 MK-7 is higher in the digestion supernatant of fermented okara. Bacillus subtilis also remained viable after digestion. Supernatants of fermented okara exhibited higher bio accessibility of total phenolic content and higher DPPH radical scavenging activity in the small and large intestines. Similarly, the concentrations of acetic acid, propionic acid, and butyric acid were 44.4%, 46.9%, and 51.8% higher, respectively. The gut microbiota was also found to be different in the fermentation supernatants between fermented and unfermented okara. Results demonstrated the potential of fermented okara as a functional food ingredient.","PeriodicalId":12347,"journal":{"name":"Food Biotechnology","volume":"35 1","pages":"136 - 157"},"PeriodicalIF":1.8000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08905436.2021.1909615","citationCount":"5","resultStr":"{\"title\":\"Evaluating the potential of Bacillus subtilis fermented okara as a functional food ingredient through in vitro digestion and fermentation\",\"authors\":\"Wai Kit Mok, Yong Xing Tan, W. N. Chen\",\"doi\":\"10.1080/08905436.2021.1909615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, in vitro digestion and fermentation was employed to simulate the consumption of fermented okara and hence, evaluate its potential as a functional food ingredient. This is to develop a method of utilizing okara without producing secondary waste. Fermentation increased the amount of soluble dietary fiber by 187%. Bioaccessibility of amino acids, fatty acids, and vitamin K2 MK-7 is higher in the digestion supernatant of fermented okara. Bacillus subtilis also remained viable after digestion. Supernatants of fermented okara exhibited higher bio accessibility of total phenolic content and higher DPPH radical scavenging activity in the small and large intestines. Similarly, the concentrations of acetic acid, propionic acid, and butyric acid were 44.4%, 46.9%, and 51.8% higher, respectively. The gut microbiota was also found to be different in the fermentation supernatants between fermented and unfermented okara. Results demonstrated the potential of fermented okara as a functional food ingredient.\",\"PeriodicalId\":12347,\"journal\":{\"name\":\"Food Biotechnology\",\"volume\":\"35 1\",\"pages\":\"136 - 157\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08905436.2021.1909615\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/08905436.2021.1909615\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/08905436.2021.1909615","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Evaluating the potential of Bacillus subtilis fermented okara as a functional food ingredient through in vitro digestion and fermentation
ABSTRACT In this study, in vitro digestion and fermentation was employed to simulate the consumption of fermented okara and hence, evaluate its potential as a functional food ingredient. This is to develop a method of utilizing okara without producing secondary waste. Fermentation increased the amount of soluble dietary fiber by 187%. Bioaccessibility of amino acids, fatty acids, and vitamin K2 MK-7 is higher in the digestion supernatant of fermented okara. Bacillus subtilis also remained viable after digestion. Supernatants of fermented okara exhibited higher bio accessibility of total phenolic content and higher DPPH radical scavenging activity in the small and large intestines. Similarly, the concentrations of acetic acid, propionic acid, and butyric acid were 44.4%, 46.9%, and 51.8% higher, respectively. The gut microbiota was also found to be different in the fermentation supernatants between fermented and unfermented okara. Results demonstrated the potential of fermented okara as a functional food ingredient.
期刊介绍:
Food Biotechnology is an international, peer-reviewed journal that is focused on current and emerging developments and applications of modern genetics, enzymatic, metabolic and systems-based biochemical processes in food and food-related biological systems. The goal is to help produce and improve foods, food ingredients, and functional foods at the processing stage and beyond agricultural production.
Other areas of strong interest are microbial and fermentation-based metabolic processing to improve foods, food microbiomes for health, metabolic basis for food ingredients with health benefits, molecular and metabolic approaches to functional foods, and biochemical processes for food waste remediation. In addition, articles addressing the topics of modern molecular, metabolic and biochemical approaches to improving food safety and quality are also published.
Researchers in agriculture, food science and nutrition, including food and biotechnology consultants around the world will benefit from the research published in Food Biotechnology. The published research and reviews can be utilized to further educational and research programs and may also be applied to food quality and value added processing challenges, which are continuously evolving and expanding based upon the peer reviewed research conducted and published in the journal.