O. Kyzymchuk, A. Marmaralı, L. Melnyk, N. Oglakcioglu, G. Ertekin, Berna Cüreklibatır Encan, Svitlana Arabuli, Arsenii Arabuli
{"title":"纬纱类型和弹性纱线穿线对弹性经编织物性能的影响。第二部分:热舒适性能","authors":"O. Kyzymchuk, A. Marmaralı, L. Melnyk, N. Oglakcioglu, G. Ertekin, Berna Cüreklibatır Encan, Svitlana Arabuli, Arsenii Arabuli","doi":"10.1177/15589250231171582","DOIUrl":null,"url":null,"abstract":"The aim of this study is to determine the performance properties of elastic warp-knitted fabrics used for medical purposes. The samples were knitted using different weft yarn material and changing the threading order of elastomer yarn. The detailed results of the dimensional and elasticity performance of elastic warp-knitted fabrics had been reported in Part I of this series. In this part, the effects of weft yarn material and the threading order of elastomer yarn on the thermal comfort characteristics were investigated. It has been seen that the type and linear density of the transverse weft yarns and the number of elastomer yarns in the fabric structure affected significantly the thermal comfort and permeability characteristics of the developed elastic warp-knitted fabrics. According to the results, using polyester yarns as weft and reducing the number of elastomer yarns led to an increase in air permeability. Additionally, the thermal conductivity characteristics of the fabrics increased as the number of elastomer yarns in the structure increased. It has been seen that from the results, the water vapour resistance coefficient of the samples is appropriate for the usage of these fabrics in medical products.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part II: Thermal comfort properties\",\"authors\":\"O. Kyzymchuk, A. Marmaralı, L. Melnyk, N. Oglakcioglu, G. Ertekin, Berna Cüreklibatır Encan, Svitlana Arabuli, Arsenii Arabuli\",\"doi\":\"10.1177/15589250231171582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to determine the performance properties of elastic warp-knitted fabrics used for medical purposes. The samples were knitted using different weft yarn material and changing the threading order of elastomer yarn. The detailed results of the dimensional and elasticity performance of elastic warp-knitted fabrics had been reported in Part I of this series. In this part, the effects of weft yarn material and the threading order of elastomer yarn on the thermal comfort characteristics were investigated. It has been seen that the type and linear density of the transverse weft yarns and the number of elastomer yarns in the fabric structure affected significantly the thermal comfort and permeability characteristics of the developed elastic warp-knitted fabrics. According to the results, using polyester yarns as weft and reducing the number of elastomer yarns led to an increase in air permeability. Additionally, the thermal conductivity characteristics of the fabrics increased as the number of elastomer yarns in the structure increased. It has been seen that from the results, the water vapour resistance coefficient of the samples is appropriate for the usage of these fabrics in medical products.\",\"PeriodicalId\":15718,\"journal\":{\"name\":\"Journal of Engineered Fibers and Fabrics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineered Fibers and Fabrics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15589250231171582\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250231171582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
The effect of weft yarn type and elastomer yarn threading on the properties of elastic warp knitted fabrics. Part II: Thermal comfort properties
The aim of this study is to determine the performance properties of elastic warp-knitted fabrics used for medical purposes. The samples were knitted using different weft yarn material and changing the threading order of elastomer yarn. The detailed results of the dimensional and elasticity performance of elastic warp-knitted fabrics had been reported in Part I of this series. In this part, the effects of weft yarn material and the threading order of elastomer yarn on the thermal comfort characteristics were investigated. It has been seen that the type and linear density of the transverse weft yarns and the number of elastomer yarns in the fabric structure affected significantly the thermal comfort and permeability characteristics of the developed elastic warp-knitted fabrics. According to the results, using polyester yarns as weft and reducing the number of elastomer yarns led to an increase in air permeability. Additionally, the thermal conductivity characteristics of the fabrics increased as the number of elastomer yarns in the structure increased. It has been seen that from the results, the water vapour resistance coefficient of the samples is appropriate for the usage of these fabrics in medical products.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.