利用具有无序上下解的单侧Nagumo条件证明半线上高阶$\ φ -$拉普拉斯算子解的存在性

IF 0.6 Q3 MATHEMATICS
Cubo Pub Date : 2023-07-19 DOI:10.56754/0719-0646.2502.173
A. Zerki, K. Bachouche, K. Ait-Mahiout
{"title":"利用具有无序上下解的单侧Nagumo条件证明半线上高阶$\\ φ -$拉普拉斯算子解的存在性","authors":"A. Zerki, K. Bachouche, K. Ait-Mahiout","doi":"10.56754/0719-0646.2502.173","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the following \\((n+1)\\)st order bvp on the half line with a \\(\\phi-\\)Laplacian operator \\[ \\begin{cases} (\\phi(u^{(n)}))'(t) = f(t,u(t),\\ldots,u^{(n)}(t)), & \\text{a.e.},\\, t\\in [0,+\\infty), \\\\ n \\in \\mathbb{N}\\setminus\\{0\\}, \\\\  \\\\ u^{(i)}(0) = A_{i}, \\, i=0,\\ldots,n-2, \\\\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\\\ u^{(n)}(+\\infty) = C. \\end{cases} \\] The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \\(f\\) is a \\(L^{1}\\)-Carathéodory function.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for higher order $\\\\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions\",\"authors\":\"A. Zerki, K. Bachouche, K. Ait-Mahiout\",\"doi\":\"10.56754/0719-0646.2502.173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the following \\\\((n+1)\\\\)st order bvp on the half line with a \\\\(\\\\phi-\\\\)Laplacian operator \\\\[ \\\\begin{cases} (\\\\phi(u^{(n)}))'(t) = f(t,u(t),\\\\ldots,u^{(n)}(t)), & \\\\text{a.e.},\\\\, t\\\\in [0,+\\\\infty), \\\\\\\\ n \\\\in \\\\mathbb{N}\\\\setminus\\\\{0\\\\}, \\\\\\\\  \\\\\\\\ u^{(i)}(0) = A_{i}, \\\\, i=0,\\\\ldots,n-2, \\\\\\\\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\\\\\\\ u^{(n)}(+\\\\infty) = C. \\\\end{cases} \\\\] The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \\\\(f\\\\) is a \\\\(L^{1}\\\\)-Carathéodory function.\",\"PeriodicalId\":36416,\"journal\":{\"name\":\"Cubo\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cubo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56754/0719-0646.2502.173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文用\(\phi-\)拉普拉斯算子\[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\  \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \]考虑了半线上的\((n+1)\) st阶bvp问题,在具有无序上下解方法的单侧Nagumo条件下,应用Schaefer不动点定理,得到了该问题解的存在性,其中\(f\)为\(L^{1}\) - carathacimodory函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions
In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\  \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \] The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \(f\) is a \(L^{1}\)-Carathéodory function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信