D. O. Anggriawan, E. Wahjono, I. Sudiharto, Anang Budikarso
{"title":"基于快速傅里叶变换和人工神经网络的电能质量扰动辨识","authors":"D. O. Anggriawan, E. Wahjono, I. Sudiharto, Anang Budikarso","doi":"10.17529/jre.v19i1.27120","DOIUrl":null,"url":null,"abstract":"This paper presents the proposed algorithms for the identification of Short Duration RMS Variations and Long Duration RMS Variations combined with harmonic. The proposed algorithms are Fast Fourier Transform (FFT) and Artificial Neural Network (ANN). The Algorithms identify nine types of Power Quality (PQ) disturbances such as normal signal, voltage sag, voltage swell, under voltage, over voltage, voltage sag combined harmonic, voltage swell combined harmonic, undervoltage combined harmonic, and over voltage combined harmonic. FFT is used to obtain the frequency spectrum of each PQ disturbance with frequency sampling of 1000 Hz, data length of 200. Output FFT is used to input data for ANN. Output ANN is a type of nine PQ disturbances. The result shows that proposed algorithms (FFT combined ANN) are effective for identification, which ANN with 20 neurons in the hidden layer has an accuracy of approximately 99.95 %","PeriodicalId":30766,"journal":{"name":"Jurnal Rekayasa Elektrika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Power Quality Disturbances Based on Fast Fourier Transform and Artificial Neural Network\",\"authors\":\"D. O. Anggriawan, E. Wahjono, I. Sudiharto, Anang Budikarso\",\"doi\":\"10.17529/jre.v19i1.27120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the proposed algorithms for the identification of Short Duration RMS Variations and Long Duration RMS Variations combined with harmonic. The proposed algorithms are Fast Fourier Transform (FFT) and Artificial Neural Network (ANN). The Algorithms identify nine types of Power Quality (PQ) disturbances such as normal signal, voltage sag, voltage swell, under voltage, over voltage, voltage sag combined harmonic, voltage swell combined harmonic, undervoltage combined harmonic, and over voltage combined harmonic. FFT is used to obtain the frequency spectrum of each PQ disturbance with frequency sampling of 1000 Hz, data length of 200. Output FFT is used to input data for ANN. Output ANN is a type of nine PQ disturbances. The result shows that proposed algorithms (FFT combined ANN) are effective for identification, which ANN with 20 neurons in the hidden layer has an accuracy of approximately 99.95 %\",\"PeriodicalId\":30766,\"journal\":{\"name\":\"Jurnal Rekayasa Elektrika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Rekayasa Elektrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17529/jre.v19i1.27120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Rekayasa Elektrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17529/jre.v19i1.27120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Power Quality Disturbances Based on Fast Fourier Transform and Artificial Neural Network
This paper presents the proposed algorithms for the identification of Short Duration RMS Variations and Long Duration RMS Variations combined with harmonic. The proposed algorithms are Fast Fourier Transform (FFT) and Artificial Neural Network (ANN). The Algorithms identify nine types of Power Quality (PQ) disturbances such as normal signal, voltage sag, voltage swell, under voltage, over voltage, voltage sag combined harmonic, voltage swell combined harmonic, undervoltage combined harmonic, and over voltage combined harmonic. FFT is used to obtain the frequency spectrum of each PQ disturbance with frequency sampling of 1000 Hz, data length of 200. Output FFT is used to input data for ANN. Output ANN is a type of nine PQ disturbances. The result shows that proposed algorithms (FFT combined ANN) are effective for identification, which ANN with 20 neurons in the hidden layer has an accuracy of approximately 99.95 %