Marcelo García, G. Aguilar, María Pía Rodríguez, J. Metcalf
{"title":"智利北部(18-19°S)元古代-古生代基底岩石(U-Th)/He年龄及其对西科迪勒拉新近纪隆升史的指示","authors":"Marcelo García, G. Aguilar, María Pía Rodríguez, J. Metcalf","doi":"10.5027/andgeov49n3-3402","DOIUrl":null,"url":null,"abstract":"In the Western Cordillera of northern Chile, the Proterozoic-Paleozoic Belén Metamorphic Complex is covered by late Oligocene-early Miocene (25-18 Ma) rocks, and both units are involved in west-vergent contractional deformation, which results in exhumation. A Miocene age (18 to 6 Ma) for deformation has been previously constrained by stratigraphy and cross-cutting relationships. To understand the youngest exhumation event and reverse faulting, we obtained 21 (U-Th)/He ages from two samples of the metamorphic rocks and the associate inverse thermal modeling. Five zircon (U-Th)/He ages from one sample are 113 to 226 Ma, very scattered, while five zircon ages from the other, are 20 to 49 Ma. The high dispersion of zircon (U-Th)/He data prevents the geological interpretation of results. Apatite grains from both samples yielded 11 (U-Th)/He ages between 10.4 and 18.7 Ma, with 9 values from 12.0 to 15.5 Ma. A slight positive correlation between apatite single-grain dates and effective uranium for 4 crystals of one sample \nsuggests relatively slow cooling. The T-t model including these 4 apatite ages shows continuous cooling from 15 to 0 Ma with a relatively more marked cooling period at 11-7 Ma. The middle-late Miocene thermal signal agrees with the geologic evolution of the region and would permit to date the last activity of the Chapiquiña-Belén reverse fault, which \nuplifted and exhumed the metamorphic rocks. This signal is relatively similar to that the eastern Altiplano, but differs considerably from that the forearc.","PeriodicalId":49108,"journal":{"name":"Andean Geology","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"(U-Th)/He ages of Proterozoic-Paleozoic basement rocks from northern Chile (18-19° S) and implications on the Neogene uplift history of the Western Cordillera\",\"authors\":\"Marcelo García, G. Aguilar, María Pía Rodríguez, J. Metcalf\",\"doi\":\"10.5027/andgeov49n3-3402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Western Cordillera of northern Chile, the Proterozoic-Paleozoic Belén Metamorphic Complex is covered by late Oligocene-early Miocene (25-18 Ma) rocks, and both units are involved in west-vergent contractional deformation, which results in exhumation. A Miocene age (18 to 6 Ma) for deformation has been previously constrained by stratigraphy and cross-cutting relationships. To understand the youngest exhumation event and reverse faulting, we obtained 21 (U-Th)/He ages from two samples of the metamorphic rocks and the associate inverse thermal modeling. Five zircon (U-Th)/He ages from one sample are 113 to 226 Ma, very scattered, while five zircon ages from the other, are 20 to 49 Ma. The high dispersion of zircon (U-Th)/He data prevents the geological interpretation of results. Apatite grains from both samples yielded 11 (U-Th)/He ages between 10.4 and 18.7 Ma, with 9 values from 12.0 to 15.5 Ma. A slight positive correlation between apatite single-grain dates and effective uranium for 4 crystals of one sample \\nsuggests relatively slow cooling. The T-t model including these 4 apatite ages shows continuous cooling from 15 to 0 Ma with a relatively more marked cooling period at 11-7 Ma. The middle-late Miocene thermal signal agrees with the geologic evolution of the region and would permit to date the last activity of the Chapiquiña-Belén reverse fault, which \\nuplifted and exhumed the metamorphic rocks. This signal is relatively similar to that the eastern Altiplano, but differs considerably from that the forearc.\",\"PeriodicalId\":49108,\"journal\":{\"name\":\"Andean Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Andean Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5027/andgeov49n3-3402\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Andean Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5027/andgeov49n3-3402","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
(U-Th)/He ages of Proterozoic-Paleozoic basement rocks from northern Chile (18-19° S) and implications on the Neogene uplift history of the Western Cordillera
In the Western Cordillera of northern Chile, the Proterozoic-Paleozoic Belén Metamorphic Complex is covered by late Oligocene-early Miocene (25-18 Ma) rocks, and both units are involved in west-vergent contractional deformation, which results in exhumation. A Miocene age (18 to 6 Ma) for deformation has been previously constrained by stratigraphy and cross-cutting relationships. To understand the youngest exhumation event and reverse faulting, we obtained 21 (U-Th)/He ages from two samples of the metamorphic rocks and the associate inverse thermal modeling. Five zircon (U-Th)/He ages from one sample are 113 to 226 Ma, very scattered, while five zircon ages from the other, are 20 to 49 Ma. The high dispersion of zircon (U-Th)/He data prevents the geological interpretation of results. Apatite grains from both samples yielded 11 (U-Th)/He ages between 10.4 and 18.7 Ma, with 9 values from 12.0 to 15.5 Ma. A slight positive correlation between apatite single-grain dates and effective uranium for 4 crystals of one sample
suggests relatively slow cooling. The T-t model including these 4 apatite ages shows continuous cooling from 15 to 0 Ma with a relatively more marked cooling period at 11-7 Ma. The middle-late Miocene thermal signal agrees with the geologic evolution of the region and would permit to date the last activity of the Chapiquiña-Belén reverse fault, which
uplifted and exhumed the metamorphic rocks. This signal is relatively similar to that the eastern Altiplano, but differs considerably from that the forearc.
期刊介绍:
This journal publishes original and review articles on geology and related sciences, in Spanish or English, in three issues a year (January, May and September). Articles or notes on major topics of broad interest in Earth Sciences dealing with the geology of South and Central America and Antarctica, and particularly of the Andes, are welcomed.
The journal is interested in publishing thematic sets of papers and accepts articles dealing with systematic Paleontology only if their main focus is the chronostratigraphical, paleoecological and/or paleogeographical importance of the taxa described therein.