{"title":"景观对森林雀形目(雀形目)后缘种群保护的影响:现状和前景","authors":"R. Hernández‐Lambraño, J. Tellería","doi":"10.1017/S0959270923000072","DOIUrl":null,"url":null,"abstract":"Summary Landscape changes affect species abundance and drive biodiversity loss. Here we explored if habitat amount and patch aggregation shape the abundance of forest passerines within the south-western Palaearctic (Morocco). As forests in this region are affected by increasing drought and temperature, we also forecasted their trends according to current predictions of climate change and explored how landscape changes could affect bird distribution. We recorded geo-referenced occurrences of seven forest passerines that were modelled with a set of environmental variables with Maxent to predict their distribution. The occurrence probabilities provided by the models were used as surrogates for the current distribution of habitat amount and patch aggregation within the country. In addition, 190 500-m line transects scattered within the country were used to estimate local bird abundance. Results showed that bird abundance recorded in line transects was positively correlated with habitat amount and patch aggregation of landscape around transects. This supports the idea that changes in these landscape metrics affect the abundance of the study species. Climate-change projections suggest that habitat amount and patch aggregation will decline in southern sectors but will be maintained or will increase at higher elevations. Given their relationship to abundance, these landscape changes suggest that forest birds will have to shift to the northernmost and elevated sectors. These results showed that landscape management can play an important role in the conservation of rear-edge populations of forest birds and suggest that any increase in forest amount and connectivity will improve bird resilience under a global change scenario.","PeriodicalId":9275,"journal":{"name":"Bird Conservation International","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape effects on the conservation of rear-edge populations of forest passerines (Passeriformes): current patterns and prospects\",\"authors\":\"R. Hernández‐Lambraño, J. Tellería\",\"doi\":\"10.1017/S0959270923000072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Landscape changes affect species abundance and drive biodiversity loss. Here we explored if habitat amount and patch aggregation shape the abundance of forest passerines within the south-western Palaearctic (Morocco). As forests in this region are affected by increasing drought and temperature, we also forecasted their trends according to current predictions of climate change and explored how landscape changes could affect bird distribution. We recorded geo-referenced occurrences of seven forest passerines that were modelled with a set of environmental variables with Maxent to predict their distribution. The occurrence probabilities provided by the models were used as surrogates for the current distribution of habitat amount and patch aggregation within the country. In addition, 190 500-m line transects scattered within the country were used to estimate local bird abundance. Results showed that bird abundance recorded in line transects was positively correlated with habitat amount and patch aggregation of landscape around transects. This supports the idea that changes in these landscape metrics affect the abundance of the study species. Climate-change projections suggest that habitat amount and patch aggregation will decline in southern sectors but will be maintained or will increase at higher elevations. Given their relationship to abundance, these landscape changes suggest that forest birds will have to shift to the northernmost and elevated sectors. These results showed that landscape management can play an important role in the conservation of rear-edge populations of forest birds and suggest that any increase in forest amount and connectivity will improve bird resilience under a global change scenario.\",\"PeriodicalId\":9275,\"journal\":{\"name\":\"Bird Conservation International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bird Conservation International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1017/S0959270923000072\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bird Conservation International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1017/S0959270923000072","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Landscape effects on the conservation of rear-edge populations of forest passerines (Passeriformes): current patterns and prospects
Summary Landscape changes affect species abundance and drive biodiversity loss. Here we explored if habitat amount and patch aggregation shape the abundance of forest passerines within the south-western Palaearctic (Morocco). As forests in this region are affected by increasing drought and temperature, we also forecasted their trends according to current predictions of climate change and explored how landscape changes could affect bird distribution. We recorded geo-referenced occurrences of seven forest passerines that were modelled with a set of environmental variables with Maxent to predict their distribution. The occurrence probabilities provided by the models were used as surrogates for the current distribution of habitat amount and patch aggregation within the country. In addition, 190 500-m line transects scattered within the country were used to estimate local bird abundance. Results showed that bird abundance recorded in line transects was positively correlated with habitat amount and patch aggregation of landscape around transects. This supports the idea that changes in these landscape metrics affect the abundance of the study species. Climate-change projections suggest that habitat amount and patch aggregation will decline in southern sectors but will be maintained or will increase at higher elevations. Given their relationship to abundance, these landscape changes suggest that forest birds will have to shift to the northernmost and elevated sectors. These results showed that landscape management can play an important role in the conservation of rear-edge populations of forest birds and suggest that any increase in forest amount and connectivity will improve bird resilience under a global change scenario.
期刊介绍:
Bird Conservation International is a quarterly peer-reviewed journal that seeks to promote worldwide research and action for the conservation of birds and the habitats upon which they depend. The official journal of BirdLife International, it provides stimulating, international and up-to-date coverage of a broad range of conservation topics, using birds to illuminate wider issues of biodiversity, conservation and sustainable resource use. It publishes original papers and reviews, including targeted articles and recommendations by leading experts.