变量Morrey–Campanato空间的先验与算子的有界性

IF 1.2 3区 数学 Q1 MATHEMATICS
Ciqiang Zhuo
{"title":"变量Morrey–Campanato空间的先验与算子的有界性","authors":"Ciqiang Zhuo","doi":"10.1007/s43034-023-00298-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(p(\\cdot ):\\ {\\mathbb {R}}^n\\rightarrow (1,\\infty )\\)</span> be a variable exponent, such that the Hardy–Littlewood maximal operator is bounded on the variable exponent Lebesgue space <span>\\(L^{p(\\cdot )}({\\mathbb {R}}^n),\\)</span> and <span>\\(\\phi :\\ {\\mathbb {R}}^n\\times (0,\\infty )\\rightarrow (0,\\infty )\\)</span> be a function satisfying some conditions. In this article, we give some properties of variable Campanato spaces <span>\\({\\mathcal {L}}_{p(\\cdot ),\\phi ,d}({\\mathbb {R}}^n),\\)</span> with a non-negative integer <i>d</i>,  and variable Morrey spaces <span>\\(L_{p(\\cdot ),\\phi }({\\mathbb {R}}^n),\\)</span> and then establish their predual spaces. As an application of duality obtained in this article, we consider the boundedness of singular integral operators on variable Morrey spaces and their predual spaces.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preduals of variable Morrey–Campanato spaces and boundedness of operators\",\"authors\":\"Ciqiang Zhuo\",\"doi\":\"10.1007/s43034-023-00298-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(p(\\\\cdot ):\\\\ {\\\\mathbb {R}}^n\\\\rightarrow (1,\\\\infty )\\\\)</span> be a variable exponent, such that the Hardy–Littlewood maximal operator is bounded on the variable exponent Lebesgue space <span>\\\\(L^{p(\\\\cdot )}({\\\\mathbb {R}}^n),\\\\)</span> and <span>\\\\(\\\\phi :\\\\ {\\\\mathbb {R}}^n\\\\times (0,\\\\infty )\\\\rightarrow (0,\\\\infty )\\\\)</span> be a function satisfying some conditions. In this article, we give some properties of variable Campanato spaces <span>\\\\({\\\\mathcal {L}}_{p(\\\\cdot ),\\\\phi ,d}({\\\\mathbb {R}}^n),\\\\)</span> with a non-negative integer <i>d</i>,  and variable Morrey spaces <span>\\\\(L_{p(\\\\cdot ),\\\\phi }({\\\\mathbb {R}}^n),\\\\)</span> and then establish their predual spaces. As an application of duality obtained in this article, we consider the boundedness of singular integral operators on variable Morrey spaces and their predual spaces.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00298-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00298-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(p(\cdot):\{\mathbb{R}}^n\rightarrow(1,\infty)\)为变指数,使得Hardy–Littlewood极大算子在变指数Lebesgue空间\(L^{p(\cgot)}({\math bb{R}^n),\)上有界,并且\(\ phi:\{\ mathbb{R}}^n\times(0,\infity)\rightarrow(0,\ infty))是满足某些条件的函数。在本文中,我们给出了具有非负整数d的变量Campanato空间({\mathcal{L}}_{p(\cdot),\phi,d}({/mathbb{R})^n)和变量Morrey空间(L_。作为对偶性的一个应用,我们考虑了奇异积分算子在变Morrey空间及其前对偶空间上的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preduals of variable Morrey–Campanato spaces and boundedness of operators

Let \(p(\cdot ):\ {\mathbb {R}}^n\rightarrow (1,\infty )\) be a variable exponent, such that the Hardy–Littlewood maximal operator is bounded on the variable exponent Lebesgue space \(L^{p(\cdot )}({\mathbb {R}}^n),\) and \(\phi :\ {\mathbb {R}}^n\times (0,\infty )\rightarrow (0,\infty )\) be a function satisfying some conditions. In this article, we give some properties of variable Campanato spaces \({\mathcal {L}}_{p(\cdot ),\phi ,d}({\mathbb {R}}^n),\) with a non-negative integer d,  and variable Morrey spaces \(L_{p(\cdot ),\phi }({\mathbb {R}}^n),\) and then establish their predual spaces. As an application of duality obtained in this article, we consider the boundedness of singular integral operators on variable Morrey spaces and their predual spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信