{"title":"基于无人机航测的水利水电建设征地区域成图方法","authors":"Cheng-cai Luo","doi":"10.21595/jme.2023.23239","DOIUrl":null,"url":null,"abstract":"In order to improve the regional planning ability of land acquisition for water conservancy and hydropower construction, a technology of land acquisition area mapping for water conservancy and hydropower construction based on UAV aerial survey is proposed. This technology uses UAV aerial survey remote sensing detection technology to realize remote sensing image monitoring of land acquisition planning for water conservancy and hydropower construction, so as to improve the accuracy and efficiency of regional planning. This technology mainly extracts information such as edge contours, key feature points, and texture pixels from remote sensing images for land acquisition mapping in water conservancy and hydropower construction. The line element feature distribution points monitored by drones scatter remote sensing images as the data source, and linear object segmentation detection processing method is used for analysis. Based on the clustering characteristics of geometric attributes such as dams, water body characteristics, fence facilities, and power generation equipment in water conservancy and hydropower construction, a regional clustering analysis model for land acquisition mapping in water conservancy and hydropower construction is established using the diversity clustering method of different terrain and geomorphic feature distribution patterns. By utilizing the regional distribution fusion of concave and convex terrain, detecting and quantitatively estimating the spatial resolution and complexity of land acquisition for water conservancy and hydropower construction, optimizing the mapping of land acquisition areas for water conservancy and hydropower construction, and providing data basis for land acquisition protection management in water conservancy and hydropower construction planning. The experiment shows that this method has good output resolution, land planning ability, and classification performance for different types of land acquisition for water conservancy and hydropower construction, and has broad prospects for promotion and application in practical applications.","PeriodicalId":42196,"journal":{"name":"Journal of Measurements in Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional mapping method of land acquisition for water conservancy and hydropower construction based on UAV aerial survey\",\"authors\":\"Cheng-cai Luo\",\"doi\":\"10.21595/jme.2023.23239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the regional planning ability of land acquisition for water conservancy and hydropower construction, a technology of land acquisition area mapping for water conservancy and hydropower construction based on UAV aerial survey is proposed. This technology uses UAV aerial survey remote sensing detection technology to realize remote sensing image monitoring of land acquisition planning for water conservancy and hydropower construction, so as to improve the accuracy and efficiency of regional planning. This technology mainly extracts information such as edge contours, key feature points, and texture pixels from remote sensing images for land acquisition mapping in water conservancy and hydropower construction. The line element feature distribution points monitored by drones scatter remote sensing images as the data source, and linear object segmentation detection processing method is used for analysis. Based on the clustering characteristics of geometric attributes such as dams, water body characteristics, fence facilities, and power generation equipment in water conservancy and hydropower construction, a regional clustering analysis model for land acquisition mapping in water conservancy and hydropower construction is established using the diversity clustering method of different terrain and geomorphic feature distribution patterns. By utilizing the regional distribution fusion of concave and convex terrain, detecting and quantitatively estimating the spatial resolution and complexity of land acquisition for water conservancy and hydropower construction, optimizing the mapping of land acquisition areas for water conservancy and hydropower construction, and providing data basis for land acquisition protection management in water conservancy and hydropower construction planning. The experiment shows that this method has good output resolution, land planning ability, and classification performance for different types of land acquisition for water conservancy and hydropower construction, and has broad prospects for promotion and application in practical applications.\",\"PeriodicalId\":42196,\"journal\":{\"name\":\"Journal of Measurements in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Measurements in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21595/jme.2023.23239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Measurements in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21595/jme.2023.23239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Regional mapping method of land acquisition for water conservancy and hydropower construction based on UAV aerial survey
In order to improve the regional planning ability of land acquisition for water conservancy and hydropower construction, a technology of land acquisition area mapping for water conservancy and hydropower construction based on UAV aerial survey is proposed. This technology uses UAV aerial survey remote sensing detection technology to realize remote sensing image monitoring of land acquisition planning for water conservancy and hydropower construction, so as to improve the accuracy and efficiency of regional planning. This technology mainly extracts information such as edge contours, key feature points, and texture pixels from remote sensing images for land acquisition mapping in water conservancy and hydropower construction. The line element feature distribution points monitored by drones scatter remote sensing images as the data source, and linear object segmentation detection processing method is used for analysis. Based on the clustering characteristics of geometric attributes such as dams, water body characteristics, fence facilities, and power generation equipment in water conservancy and hydropower construction, a regional clustering analysis model for land acquisition mapping in water conservancy and hydropower construction is established using the diversity clustering method of different terrain and geomorphic feature distribution patterns. By utilizing the regional distribution fusion of concave and convex terrain, detecting and quantitatively estimating the spatial resolution and complexity of land acquisition for water conservancy and hydropower construction, optimizing the mapping of land acquisition areas for water conservancy and hydropower construction, and providing data basis for land acquisition protection management in water conservancy and hydropower construction planning. The experiment shows that this method has good output resolution, land planning ability, and classification performance for different types of land acquisition for water conservancy and hydropower construction, and has broad prospects for promotion and application in practical applications.