D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani
{"title":"沥青轨道设计与印尼现有有碴轨道路基性能分析","authors":"D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani","doi":"10.1515/jmbm-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of subgrade in asphaltic rail track design and Indonesia’s existing ballasted track\",\"authors\":\"D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani\",\"doi\":\"10.1515/jmbm-2022-0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance analysis of subgrade in asphaltic rail track design and Indonesia’s existing ballasted track
Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.