沥青轨道设计与印尼现有有碴轨道路基性能分析

IF 1.7 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani
{"title":"沥青轨道设计与印尼现有有碴轨道路基性能分析","authors":"D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani","doi":"10.1515/jmbm-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of subgrade in asphaltic rail track design and Indonesia’s existing ballasted track\",\"authors\":\"D. Setiawan, S. A. Rosyidi, Nanda Ahda Imron, Nyimas Arnita Aprilia, Bambang Drajat, Rusdi Sahla Arifan, Wilsamilia Nurizki Galihajiningtresna, Syafiq Abdul Ghani\",\"doi\":\"10.1515/jmbm-2022-0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于路基相关问题,印尼有碴轨道的性能仍然是印尼铁路利益相关者提高客运列车运营速度的重大障碍。本研究旨在研究印度尼西亚有碴轨道和两种沥青轨道设计(沥青覆盖层和沥青铺装层)在基于三种不同列车速度(120(低速),240(中速)和360公里/小时(高速))的不同循环加载条件下的路基垂直压应力。各沥青轨道设计的交流层厚度为:沥青铺装层厚度为0.1、0.2、0.3、0.4 m,沥青铺装层厚度为0.075、0.15、0.225、0.3 m。采用二维有限元模型和仿真技术对路基的竖向压应力特性进行了捕捉和预测。本研究最明显的发现是沥青铺装轨道比沥青铺装轨道和印尼有碴轨道分别具有更大的将应力从顶部结构传递和减小到路基层的能力。该研究为沥青轨道在印尼铁路网中的应用前景提供了启示,以提高客运列车的运行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance analysis of subgrade in asphaltic rail track design and Indonesia’s existing ballasted track
Abstract Due to subgrade-related concerns, the performance of Indonesia’s ballasted track continues to be significant impediments for the Indonesian railway stakeholders’ intention to increase the speed of passenger train operations. This study aims to examine the vertical compressive stress in the subgrade of Indonesia’s ballasted track and two asphaltic rail track designs, asphaltic overlayment and asphaltic underlayment, under various cyclic loading conditions based on three different train speeds, 120 (low speed), 240 (medium speed), and 360 kph (high speed). The AC layer thicknesses for each asphaltic rail track design are as follows: 0.1, 0.2, 0.3, and 0.4 m for asphaltic underlayment, and 0.075, 0.15, 0.225, and 0.3 m for asphaltic overlayment. 2D finite element models and simulations were used to capture and predict the subgrade’s vertical compressive stress performance. The most obvious finding to emerge from this study is that the asphaltic overlayment track has a greater capacity for transmitting and decreasing stresses from the top structure to subgrade layer than the asphaltic underlayment track and the Indonesia’ ballasted track, respectively. This research can shed light on the prospective application of asphaltic rail track to the Indonesian rail network for the faster passenger trains operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Materials
Journal of the Mechanical Behavior of Materials Materials Science-Materials Science (miscellaneous)
CiteScore
3.00
自引率
11.10%
发文量
76
审稿时长
30 weeks
期刊介绍: The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信