Hill球涡的稳定性

IF 3.1 1区 数学 Q1 MATHEMATICS
Kyudong Choi
{"title":"Hill球涡的稳定性","authors":"Kyudong Choi","doi":"10.1002/cpa.22134","DOIUrl":null,"url":null,"abstract":"<p>We study stability of a spherical vortex introduced by M. Hill in 1894, which is an explicit solution of the three-dimensional incompressible Euler equations. The flow is axi-symmetric with no swirl, the vortex core is simply a ball sliding on the axis of symmetry with a constant speed, and the vorticity in the core is proportional to the distance from the symmetry axis. We use the variational setting introduced by A. Friedman and B. Turkington (<i>Trans. Amer. Math. Soc</i>., 1981), which produced a maximizer of the kinetic energy under constraints on vortex strength, impulse, and circulation. We match the set of maximizers with the Hill's vortex via the uniqueness result of C. Amick and L. Fraenkel (<i>Arch. Rational Mech. Anal</i>., 1986). The matching process is done by an approximation near exceptional points (so-called metrical boundary points) of the vortex core. As a consequence, the stability up to a translation is obtained by using a concentrated compactness method.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 1","pages":"52-138"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Stability of Hill's spherical vortex\",\"authors\":\"Kyudong Choi\",\"doi\":\"10.1002/cpa.22134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study stability of a spherical vortex introduced by M. Hill in 1894, which is an explicit solution of the three-dimensional incompressible Euler equations. The flow is axi-symmetric with no swirl, the vortex core is simply a ball sliding on the axis of symmetry with a constant speed, and the vorticity in the core is proportional to the distance from the symmetry axis. We use the variational setting introduced by A. Friedman and B. Turkington (<i>Trans. Amer. Math. Soc</i>., 1981), which produced a maximizer of the kinetic energy under constraints on vortex strength, impulse, and circulation. We match the set of maximizers with the Hill's vortex via the uniqueness result of C. Amick and L. Fraenkel (<i>Arch. Rational Mech. Anal</i>., 1986). The matching process is done by an approximation near exceptional points (so-called metrical boundary points) of the vortex core. As a consequence, the stability up to a translation is obtained by using a concentrated compactness method.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 1\",\"pages\":\"52-138\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22134\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22134","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了M.Hill在1894年引入的球形涡旋的稳定性,这是三维不可压缩欧拉方程的显式解。流动是轴对称的,没有涡流,涡核只是一个在对称轴上以恒定速度滑动的球,涡核中的涡度与离对称轴的距离成正比。我们使用A.Friedman和B.Turkington(Trans.Amer.Math.Soc.,1981)引入的变分设置,该设置在涡流强度、脉冲和环流的约束下产生动能的最大化器。我们通过C.Amick和L.Fraenkel的唯一性结果将最大化器集与Hill涡相匹配(Arch.Rrational Mech.Anal.,1986)。匹配过程是通过在涡核的异常点(所谓的测量边界点)附近进行近似来完成的。因此,通过使用集中紧致性方法来获得直到平移的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Hill's spherical vortex

We study stability of a spherical vortex introduced by M. Hill in 1894, which is an explicit solution of the three-dimensional incompressible Euler equations. The flow is axi-symmetric with no swirl, the vortex core is simply a ball sliding on the axis of symmetry with a constant speed, and the vorticity in the core is proportional to the distance from the symmetry axis. We use the variational setting introduced by A. Friedman and B. Turkington (Trans. Amer. Math. Soc., 1981), which produced a maximizer of the kinetic energy under constraints on vortex strength, impulse, and circulation. We match the set of maximizers with the Hill's vortex via the uniqueness result of C. Amick and L. Fraenkel (Arch. Rational Mech. Anal., 1986). The matching process is done by an approximation near exceptional points (so-called metrical boundary points) of the vortex core. As a consequence, the stability up to a translation is obtained by using a concentrated compactness method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信