土壤中石膏的定量:方法论建议

IF 2 Q3 SOIL SCIENCE
D. Álvarez, M. Antúnez, Silvia Porras, R. Rodríguez‐Ochoa, J. R. Olarieta, R. Poch
{"title":"土壤中石膏的定量:方法论建议","authors":"D. Álvarez, M. Antúnez, Silvia Porras, R. Rodríguez‐Ochoa, J. R. Olarieta, R. Poch","doi":"10.3389/sjss.2022.10669","DOIUrl":null,"url":null,"abstract":"Gypsum is widely found in soils under arid and semi-arid climates due to its semi-soluble nature. In spite of that, they are less known than other soils, and this has generated some misunderstandings in some initial pedological concepts and in soil classification systems. In addition, the quantification of gypsum, and in particular of its secondary accumulations is affected by the sampling procedures and sample handling in the lab; besides by the methods used for the determination of gypsum themselves, since they differ on the accuracy, cost, and expertise needed. The objective of our research is to improve some laboratory procedures in order to determine and quantify gypsum in the soil, especially secondary accumulations. We applied several methods of sample handling and gypsum analysis to a loess profile in the Ebro Valley (NE Iberia), consisting of 10 horizons containing gypsum in varying amounts (0 to about 50%); of different sizes and morphologies. We propose a protocol considering procedures (sieving or not), qualitative determinations and two methods (turbidimetry and dehydration of crystallization water) for an optimal determination of gypsum depending on the characteristics of the sample and compared them with the acetone method (US Salinity Laboratory Staff, Agric. Handb., 1954, 60, 175; Nelson, 1978, 181), as it is the reference method in the main Classification Systems. The results obtained after applying the different methods for the analysis of gypsum in bulk samples have allowed us to propose a decision tree procedure for the determination of gypsum in soil materials. This procedure includes, determination of gypsum in all fractions, coarse and fine, the estimated amount of gypsum in the field (as a major or minor component) and the presence of other components that may interfere with the results. The most accurate results are obtained with those methods based on the loss of gypsum water upon heating when gypsum content is >4%, and with the turbidimetric method in case of lower amounts of gypsum. Finally, we discuss the implications of these analyses when a soil is classified according to the main soil classification systems (WRB 2014; Soil Survey Staff, SSS- NRCS, 2014).","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantification of Gypsum in Soils: Methodological Proposal\",\"authors\":\"D. Álvarez, M. Antúnez, Silvia Porras, R. Rodríguez‐Ochoa, J. R. Olarieta, R. Poch\",\"doi\":\"10.3389/sjss.2022.10669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gypsum is widely found in soils under arid and semi-arid climates due to its semi-soluble nature. In spite of that, they are less known than other soils, and this has generated some misunderstandings in some initial pedological concepts and in soil classification systems. In addition, the quantification of gypsum, and in particular of its secondary accumulations is affected by the sampling procedures and sample handling in the lab; besides by the methods used for the determination of gypsum themselves, since they differ on the accuracy, cost, and expertise needed. The objective of our research is to improve some laboratory procedures in order to determine and quantify gypsum in the soil, especially secondary accumulations. We applied several methods of sample handling and gypsum analysis to a loess profile in the Ebro Valley (NE Iberia), consisting of 10 horizons containing gypsum in varying amounts (0 to about 50%); of different sizes and morphologies. We propose a protocol considering procedures (sieving or not), qualitative determinations and two methods (turbidimetry and dehydration of crystallization water) for an optimal determination of gypsum depending on the characteristics of the sample and compared them with the acetone method (US Salinity Laboratory Staff, Agric. Handb., 1954, 60, 175; Nelson, 1978, 181), as it is the reference method in the main Classification Systems. The results obtained after applying the different methods for the analysis of gypsum in bulk samples have allowed us to propose a decision tree procedure for the determination of gypsum in soil materials. This procedure includes, determination of gypsum in all fractions, coarse and fine, the estimated amount of gypsum in the field (as a major or minor component) and the presence of other components that may interfere with the results. The most accurate results are obtained with those methods based on the loss of gypsum water upon heating when gypsum content is >4%, and with the turbidimetric method in case of lower amounts of gypsum. Finally, we discuss the implications of these analyses when a soil is classified according to the main soil classification systems (WRB 2014; Soil Survey Staff, SSS- NRCS, 2014).\",\"PeriodicalId\":43464,\"journal\":{\"name\":\"Spanish Journal of Soil Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spanish Journal of Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/sjss.2022.10669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/sjss.2022.10669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

石膏由于其半可溶性质,广泛存在于干旱和半干旱气候下的土壤中。尽管如此,它们比其他土壤鲜为人知,这在一些最初的土壤学概念和土壤分类系统中产生了一些误解。此外,石膏的定量,特别是其二次堆积,也受到实验室取样程序和样品处理的影响;除了用于石膏测定的方法本身之外,因为它们在准确性、成本和所需专业知识方面有所不同。我们研究的目的是改进一些实验室程序,以确定和量化土壤中的石膏,尤其是次生堆积物。我们对埃布罗河谷(伊比利亚东北部)的黄土剖面应用了几种样品处理和石膏分析方法,该剖面由10层组成,含有不同量的石膏(0至约50%);具有不同尺寸和形态。我们提出了一种方案,该方案考虑了根据样品特性最佳测定石膏的程序(筛分与否)、定性测定和两种方法(浊度法和结晶水脱水法),并将其与丙酮法进行了比较(美国盐度实验室工作人员,Agric.Handb.,1954,60175;Nelson,1978,181),因为它是主要分类系统中的参考方法。应用不同方法分析散装样品中的石膏后获得的结果使我们能够提出一种测定土壤材料中石膏的决策树程序。该程序包括确定所有粗粒和细粒的石膏、现场石膏的估计量(作为主要或次要成分)以及是否存在可能干扰结果的其他成分。当石膏含量>4%时,这些方法基于加热时石膏水的损失,而当石膏含量较低时,使用浊度法可获得最准确的结果。最后,当根据主要土壤分类系统对土壤进行分类时,我们讨论了这些分析的含义(WRB 2014;土壤调查人员,SSS-NRCS,2014)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of Gypsum in Soils: Methodological Proposal
Gypsum is widely found in soils under arid and semi-arid climates due to its semi-soluble nature. In spite of that, they are less known than other soils, and this has generated some misunderstandings in some initial pedological concepts and in soil classification systems. In addition, the quantification of gypsum, and in particular of its secondary accumulations is affected by the sampling procedures and sample handling in the lab; besides by the methods used for the determination of gypsum themselves, since they differ on the accuracy, cost, and expertise needed. The objective of our research is to improve some laboratory procedures in order to determine and quantify gypsum in the soil, especially secondary accumulations. We applied several methods of sample handling and gypsum analysis to a loess profile in the Ebro Valley (NE Iberia), consisting of 10 horizons containing gypsum in varying amounts (0 to about 50%); of different sizes and morphologies. We propose a protocol considering procedures (sieving or not), qualitative determinations and two methods (turbidimetry and dehydration of crystallization water) for an optimal determination of gypsum depending on the characteristics of the sample and compared them with the acetone method (US Salinity Laboratory Staff, Agric. Handb., 1954, 60, 175; Nelson, 1978, 181), as it is the reference method in the main Classification Systems. The results obtained after applying the different methods for the analysis of gypsum in bulk samples have allowed us to propose a decision tree procedure for the determination of gypsum in soil materials. This procedure includes, determination of gypsum in all fractions, coarse and fine, the estimated amount of gypsum in the field (as a major or minor component) and the presence of other components that may interfere with the results. The most accurate results are obtained with those methods based on the loss of gypsum water upon heating when gypsum content is >4%, and with the turbidimetric method in case of lower amounts of gypsum. Finally, we discuss the implications of these analyses when a soil is classified according to the main soil classification systems (WRB 2014; Soil Survey Staff, SSS- NRCS, 2014).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信