{"title":"接触3-流形的Lipschitz同态群","authors":"Daniel Perry","doi":"10.14321/realanalexch.47.1.1598582300","DOIUrl":null,"url":null,"abstract":"We study contact 3-manifolds using the techniques of sub-Riemannian geometry and geometric measure theory, in particular establishing properties of their Lipschitz homotopy groups. We prove a biLipschitz version of the Theorem of Darboux: a contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is locally biLipschitz equivalent to the Heisenberg group $\\mathbb{H}^n$ with its Carnot-Caratheodory metric. Then each contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is purely $k$-unrectifiable for $k>n$. We extend results of Dejarnette et al. (arXiv:1109.4641 [math.FA]) and Wenger and Young (arXiv:1210.6943 [math.GT]) by showing for any purely 2-unrectifiable sub-Riemannian manifold $(M,\\xi,g)$ that the $n$th Lipschitz homotopy group is trivial for $n\\geq2$ and that the set of oriented, horizontal knots in $(M,\\xi)$ injects into the first Lipschitz homotopy group. Thus, the first Lipschitz homotopy group of any contact 3-manifold is uncountably generated. Therefore, in the sense of Lipschitz homotopy groups, a contact 3-manifold is a $K(\\pi,1)$-space for an uncountably generated group $\\pi$. Finally, we prove that each open distributional embedding between purely 2-unrectifiable sub-Riemannian manifolds induces an injective map on the associated first Lipschitz homotopy groups. Therefore, each open subset of a contact 3-manifold determines an uncountable subgroup of the first Lipschitz homotopy group of the contact 3-manifold.","PeriodicalId":44674,"journal":{"name":"Real Analysis Exchange","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lipschitz Homotopy Groups of Contact 3-Manifolds\",\"authors\":\"Daniel Perry\",\"doi\":\"10.14321/realanalexch.47.1.1598582300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study contact 3-manifolds using the techniques of sub-Riemannian geometry and geometric measure theory, in particular establishing properties of their Lipschitz homotopy groups. We prove a biLipschitz version of the Theorem of Darboux: a contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is locally biLipschitz equivalent to the Heisenberg group $\\\\mathbb{H}^n$ with its Carnot-Caratheodory metric. Then each contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is purely $k$-unrectifiable for $k>n$. We extend results of Dejarnette et al. (arXiv:1109.4641 [math.FA]) and Wenger and Young (arXiv:1210.6943 [math.GT]) by showing for any purely 2-unrectifiable sub-Riemannian manifold $(M,\\\\xi,g)$ that the $n$th Lipschitz homotopy group is trivial for $n\\\\geq2$ and that the set of oriented, horizontal knots in $(M,\\\\xi)$ injects into the first Lipschitz homotopy group. Thus, the first Lipschitz homotopy group of any contact 3-manifold is uncountably generated. Therefore, in the sense of Lipschitz homotopy groups, a contact 3-manifold is a $K(\\\\pi,1)$-space for an uncountably generated group $\\\\pi$. Finally, we prove that each open distributional embedding between purely 2-unrectifiable sub-Riemannian manifolds induces an injective map on the associated first Lipschitz homotopy groups. Therefore, each open subset of a contact 3-manifold determines an uncountable subgroup of the first Lipschitz homotopy group of the contact 3-manifold.\",\"PeriodicalId\":44674,\"journal\":{\"name\":\"Real Analysis Exchange\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real Analysis Exchange\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14321/realanalexch.47.1.1598582300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real Analysis Exchange","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.47.1.1598582300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study contact 3-manifolds using the techniques of sub-Riemannian geometry and geometric measure theory, in particular establishing properties of their Lipschitz homotopy groups. We prove a biLipschitz version of the Theorem of Darboux: a contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is locally biLipschitz equivalent to the Heisenberg group $\mathbb{H}^n$ with its Carnot-Caratheodory metric. Then each contact $(2n+1)$-manifold endowed with a sub-Riemannian structure is purely $k$-unrectifiable for $k>n$. We extend results of Dejarnette et al. (arXiv:1109.4641 [math.FA]) and Wenger and Young (arXiv:1210.6943 [math.GT]) by showing for any purely 2-unrectifiable sub-Riemannian manifold $(M,\xi,g)$ that the $n$th Lipschitz homotopy group is trivial for $n\geq2$ and that the set of oriented, horizontal knots in $(M,\xi)$ injects into the first Lipschitz homotopy group. Thus, the first Lipschitz homotopy group of any contact 3-manifold is uncountably generated. Therefore, in the sense of Lipschitz homotopy groups, a contact 3-manifold is a $K(\pi,1)$-space for an uncountably generated group $\pi$. Finally, we prove that each open distributional embedding between purely 2-unrectifiable sub-Riemannian manifolds induces an injective map on the associated first Lipschitz homotopy groups. Therefore, each open subset of a contact 3-manifold determines an uncountable subgroup of the first Lipschitz homotopy group of the contact 3-manifold.