常规烧结AlFeCoNiSi高熵合金的表面形貌转变和致密化行为

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
S. Dewangan, C. Nagarjuna, Hansung Lee, Ashutosh Sharma, B. Ahn
{"title":"常规烧结AlFeCoNiSi高熵合金的表面形貌转变和致密化行为","authors":"S. Dewangan, C. Nagarjuna, Hansung Lee, Ashutosh Sharma, B. Ahn","doi":"10.1080/00325899.2023.2223019","DOIUrl":null,"url":null,"abstract":"ABSTRACT A preliminary study has been performed to understand the effect of pressureless sintering on the surface morphology of the AlFeCoNi alloy by the addition of the Si element. This study aims to determine the possibility of achieving the densification of high entropy alloy using the conventional sintering technique. The results indicate that the HEAs have a single-phase BCC structure even with the addition of Si. The thermodynamic simulation (CALPHAD) was used to predict the phase formation. The variation of crystallite sizes and lattice strains caused by sintering temperatures was also discussed. In addition, densification mechanisms occurring with the different sintering temperatures have been discussed. The formation of porosity was observed, however, the density of HEAs improved with increasing sintering temperature. Ultimately, it was suggested that the present HEAs required higher sintering temperatures and a longer time to achieve high density.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Surface morphology transformation and densification behaviour of conventionally sintered AlFeCoNiSi high entropy alloys\",\"authors\":\"S. Dewangan, C. Nagarjuna, Hansung Lee, Ashutosh Sharma, B. Ahn\",\"doi\":\"10.1080/00325899.2023.2223019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A preliminary study has been performed to understand the effect of pressureless sintering on the surface morphology of the AlFeCoNi alloy by the addition of the Si element. This study aims to determine the possibility of achieving the densification of high entropy alloy using the conventional sintering technique. The results indicate that the HEAs have a single-phase BCC structure even with the addition of Si. The thermodynamic simulation (CALPHAD) was used to predict the phase formation. The variation of crystallite sizes and lattice strains caused by sintering temperatures was also discussed. In addition, densification mechanisms occurring with the different sintering temperatures have been discussed. The formation of porosity was observed, however, the density of HEAs improved with increasing sintering temperature. Ultimately, it was suggested that the present HEAs required higher sintering temperatures and a longer time to achieve high density.\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2023.2223019\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2223019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 4

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface morphology transformation and densification behaviour of conventionally sintered AlFeCoNiSi high entropy alloys
ABSTRACT A preliminary study has been performed to understand the effect of pressureless sintering on the surface morphology of the AlFeCoNi alloy by the addition of the Si element. This study aims to determine the possibility of achieving the densification of high entropy alloy using the conventional sintering technique. The results indicate that the HEAs have a single-phase BCC structure even with the addition of Si. The thermodynamic simulation (CALPHAD) was used to predict the phase formation. The variation of crystallite sizes and lattice strains caused by sintering temperatures was also discussed. In addition, densification mechanisms occurring with the different sintering temperatures have been discussed. The formation of porosity was observed, however, the density of HEAs improved with increasing sintering temperature. Ultimately, it was suggested that the present HEAs required higher sintering temperatures and a longer time to achieve high density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信