{"title":"希尔伯特模的一类亲C^* -代数和有界元","authors":"Morteza Kardel, R. Sanati","doi":"10.32513/tmj/19322008122","DOIUrl":null,"url":null,"abstract":"In this paper, introducing the notion of topologically simple pro $C^*$-algebras, we show that direct product of $C^*$-algebras $K(H_i)$, as the set of all compact operators on a Hilbert space $H_i$, is a topologically simple pro $C^*$-algebra. Applying this fact, we prove that the set of all bounded elements of a certain class of Hilbert modules are dense in the same module.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A certain class of pro $C^*$-algebras and bounded elements of a Hilbert module\",\"authors\":\"Morteza Kardel, R. Sanati\",\"doi\":\"10.32513/tmj/19322008122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, introducing the notion of topologically simple pro $C^*$-algebras, we show that direct product of $C^*$-algebras $K(H_i)$, as the set of all compact operators on a Hilbert space $H_i$, is a topologically simple pro $C^*$-algebra. Applying this fact, we prove that the set of all bounded elements of a certain class of Hilbert modules are dense in the same module.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A certain class of pro $C^*$-algebras and bounded elements of a Hilbert module
In this paper, introducing the notion of topologically simple pro $C^*$-algebras, we show that direct product of $C^*$-algebras $K(H_i)$, as the set of all compact operators on a Hilbert space $H_i$, is a topologically simple pro $C^*$-algebra. Applying this fact, we prove that the set of all bounded elements of a certain class of Hilbert modules are dense in the same module.