Yuchao Wang, Jiarong Liu, Wenwu Liu, C. Li, Kun Guo
{"title":"永磁同步电机在深井钻机提升系统中的应用及运行特性研究","authors":"Yuchao Wang, Jiarong Liu, Wenwu Liu, C. Li, Kun Guo","doi":"10.1177/16878132231194827","DOIUrl":null,"url":null,"abstract":"Most geological drilling rigs using asynchronous motor with gear box as the drive device of drawworks have problems of instability at low speed, complex mechanism, and lots maintenance work. This paper proposes an application of permanent magnet synchronous motor (PMSM) used in drawworks. Firstly, running characteristics of PMSM in steady state are analyzed and calculated theoretically, and mathematical models of motor’s power, torque, and power loss are given. Secondly, vector control principle of PMSM is analyzed and introduced, and maximum torque/current control method is finally decided as the basis for the design of control system. Thirdly, running parameters of PMSM in three stages (lowering drill string, constant speed/pressure drilling, and lifting drill string) of each test point were measured, and the curves of key parameters of PMSM are given. Finally, it is concluded that drawworks with PMSMs can not only improve control performance, reduce power consumption, and save energy, but also omit the gearbox, which makes structure of lifting system more compact and reduce lots maintenance work. The research work of this paper lays a foundation for the popularization and application of PMSM in the industry of deep well drilling rig.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on application and running characteristics of permanent magnet synchronous motor used in lifting system of deep well drilling rig\",\"authors\":\"Yuchao Wang, Jiarong Liu, Wenwu Liu, C. Li, Kun Guo\",\"doi\":\"10.1177/16878132231194827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most geological drilling rigs using asynchronous motor with gear box as the drive device of drawworks have problems of instability at low speed, complex mechanism, and lots maintenance work. This paper proposes an application of permanent magnet synchronous motor (PMSM) used in drawworks. Firstly, running characteristics of PMSM in steady state are analyzed and calculated theoretically, and mathematical models of motor’s power, torque, and power loss are given. Secondly, vector control principle of PMSM is analyzed and introduced, and maximum torque/current control method is finally decided as the basis for the design of control system. Thirdly, running parameters of PMSM in three stages (lowering drill string, constant speed/pressure drilling, and lifting drill string) of each test point were measured, and the curves of key parameters of PMSM are given. Finally, it is concluded that drawworks with PMSMs can not only improve control performance, reduce power consumption, and save energy, but also omit the gearbox, which makes structure of lifting system more compact and reduce lots maintenance work. The research work of this paper lays a foundation for the popularization and application of PMSM in the industry of deep well drilling rig.\",\"PeriodicalId\":49110,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132231194827\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132231194827","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation on application and running characteristics of permanent magnet synchronous motor used in lifting system of deep well drilling rig
Most geological drilling rigs using asynchronous motor with gear box as the drive device of drawworks have problems of instability at low speed, complex mechanism, and lots maintenance work. This paper proposes an application of permanent magnet synchronous motor (PMSM) used in drawworks. Firstly, running characteristics of PMSM in steady state are analyzed and calculated theoretically, and mathematical models of motor’s power, torque, and power loss are given. Secondly, vector control principle of PMSM is analyzed and introduced, and maximum torque/current control method is finally decided as the basis for the design of control system. Thirdly, running parameters of PMSM in three stages (lowering drill string, constant speed/pressure drilling, and lifting drill string) of each test point were measured, and the curves of key parameters of PMSM are given. Finally, it is concluded that drawworks with PMSMs can not only improve control performance, reduce power consumption, and save energy, but also omit the gearbox, which makes structure of lifting system more compact and reduce lots maintenance work. The research work of this paper lays a foundation for the popularization and application of PMSM in the industry of deep well drilling rig.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering