\(A\)群代数中卷积算子的遍历性

Pub Date : 2022-10-10 DOI:10.1134/S0016266322020046
H. Mustafaev, A. Huseynli
{"title":"\\(A\\)群代数中卷积算子的遍历性","authors":"H. Mustafaev,&nbsp;A. Huseynli","doi":"10.1134/S0016266322020046","DOIUrl":null,"url":null,"abstract":"<p> Let <span>\\(G\\)</span> be a locally compact Abelian group with dual group <span>\\(\\Gamma \\)</span>, let <span>\\(\\mu\\)</span> be a power bounded measure on <span>\\(G\\)</span>, and let <span>\\(A=[ a_{n,k}]_{n,k=0}^{\\infty}\\)</span> be a strongly regular matrix. We show that the sequence <span>\\(\\{\\sum_{k=0}^{\\infty}a_{n,k}\\mu^{k}\\ast f\\}_{n=0}^{\\infty}\\)</span> converges in the <span>\\(L^{1}\\)</span>-norm for every <span>\\(f\\in L^{1}(G)\\)</span> if and only if <span>\\(\\mathcal{F}_{\\mu}:=\\{\\gamma \\in \\Gamma:\\widehat{\\mu}(\\gamma) =1\\} \\)</span> is clopen in <span>\\(\\Gamma \\)</span>, where <span>\\(\\widehat{\\mu}\\)</span> is the Fourier–Stieltjes transform of <span>\\(\\mu \\)</span>. If <span>\\(\\mu \\)</span> is a probability measure, then <span>\\(\\mathcal{F}_{\\mu}\\)</span> is clopen in <span>\\(\\Gamma \\)</span> if and only if the closed subgroup generated by the support of <span>\\(\\mu \\)</span> is compact. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\(A\\\\)-Ergodicity of Convolution Operators in Group Algebras\",\"authors\":\"H. Mustafaev,&nbsp;A. Huseynli\",\"doi\":\"10.1134/S0016266322020046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Let <span>\\\\(G\\\\)</span> be a locally compact Abelian group with dual group <span>\\\\(\\\\Gamma \\\\)</span>, let <span>\\\\(\\\\mu\\\\)</span> be a power bounded measure on <span>\\\\(G\\\\)</span>, and let <span>\\\\(A=[ a_{n,k}]_{n,k=0}^{\\\\infty}\\\\)</span> be a strongly regular matrix. We show that the sequence <span>\\\\(\\\\{\\\\sum_{k=0}^{\\\\infty}a_{n,k}\\\\mu^{k}\\\\ast f\\\\}_{n=0}^{\\\\infty}\\\\)</span> converges in the <span>\\\\(L^{1}\\\\)</span>-norm for every <span>\\\\(f\\\\in L^{1}(G)\\\\)</span> if and only if <span>\\\\(\\\\mathcal{F}_{\\\\mu}:=\\\\{\\\\gamma \\\\in \\\\Gamma:\\\\widehat{\\\\mu}(\\\\gamma) =1\\\\} \\\\)</span> is clopen in <span>\\\\(\\\\Gamma \\\\)</span>, where <span>\\\\(\\\\widehat{\\\\mu}\\\\)</span> is the Fourier–Stieltjes transform of <span>\\\\(\\\\mu \\\\)</span>. If <span>\\\\(\\\\mu \\\\)</span> is a probability measure, then <span>\\\\(\\\\mathcal{F}_{\\\\mu}\\\\)</span> is clopen in <span>\\\\(\\\\Gamma \\\\)</span> if and only if the closed subgroup generated by the support of <span>\\\\(\\\\mu \\\\)</span> is compact. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266322020046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设\(G\)是一个具有对偶群\(\Gamma \)的局部紧阿贝尔群,设\(\mu\)是\(G\)上的幂有界测度,设\(A=[ a_{n,k}]_{n,k=0}^{\infty}\)是一个强正则矩阵。我们证明了序列\(\{\sum_{k=0}^{\infty}a_{n,k}\mu^{k}\ast f\}_{n=0}^{\infty}\)收敛于\(L^{1}\)范数对于每一个\(f\in L^{1}(G)\)当且仅当\(\mathcal{F}_{\mu}:=\{\gamma \in \Gamma:\widehat{\mu}(\gamma) =1\} \)在\(\Gamma \)中闭合,其中\(\widehat{\mu}\)是\(\mu \)的Fourier-Stieltjes变换。如果\(\mu \)是一个概率度量,那么当且仅当支持\(\mu \)生成的封闭子组紧凑时,\(\mathcal{F}_{\mu}\)在\(\Gamma \)中是开放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
\(A\)-Ergodicity of Convolution Operators in Group Algebras

Let \(G\) be a locally compact Abelian group with dual group \(\Gamma \), let \(\mu\) be a power bounded measure on \(G\), and let \(A=[ a_{n,k}]_{n,k=0}^{\infty}\) be a strongly regular matrix. We show that the sequence \(\{\sum_{k=0}^{\infty}a_{n,k}\mu^{k}\ast f\}_{n=0}^{\infty}\) converges in the \(L^{1}\)-norm for every \(f\in L^{1}(G)\) if and only if \(\mathcal{F}_{\mu}:=\{\gamma \in \Gamma:\widehat{\mu}(\gamma) =1\} \) is clopen in \(\Gamma \), where \(\widehat{\mu}\) is the Fourier–Stieltjes transform of \(\mu \). If \(\mu \) is a probability measure, then \(\mathcal{F}_{\mu}\) is clopen in \(\Gamma \) if and only if the closed subgroup generated by the support of \(\mu \) is compact.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信