{"title":"一个行为良好的各向异性奇异星模型","authors":"Amos V. Mathias, J. Sunzu","doi":"10.1155/2022/7243750","DOIUrl":null,"url":null,"abstract":"We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Well-Behaved Anisotropic Strange Star Model\",\"authors\":\"Amos V. Mathias, J. Sunzu\",\"doi\":\"10.1155/2022/7243750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7243750\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/7243750","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.
期刊介绍:
Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike.
As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.