一个行为良好的各向异性奇异星模型

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Amos V. Mathias, J. Sunzu
{"title":"一个行为良好的各向异性奇异星模型","authors":"Amos V. Mathias, J. Sunzu","doi":"10.1155/2022/7243750","DOIUrl":null,"url":null,"abstract":"We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Well-Behaved Anisotropic Strange Star Model\",\"authors\":\"Amos V. Mathias, J. Sunzu\",\"doi\":\"10.1155/2022/7243750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/7243750\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/7243750","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

利用爱因斯坦场方程,我们得到了一个新的致密恒星物体的非奇异精确模型。该模型与夸克物质各向异性的恒星在没有电场的情况下是一致的。我们的处理考虑了静态和球对称的时空几何。对其中一个引力势的有理形式进行了Ansatz,以产生物理上可容许的结果。通过分析托尔曼-奥本海默-沃尔科夫(TOV)方程,测试了恒星内部引力、流体静力和各向异性力的平衡。产生了几个质量和半径与过去观测结果相当的恒星物体。我们的模型遵循不同的稳定性测试和能量条件。势、物质变量、稳定性和能量条件的剖面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Well-Behaved Anisotropic Strange Star Model
We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter variables, stability, and energy conditions are well behaved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信