{"title":"疲劳载荷下船舶结构的评估:有限元基准和扩展性能分析","authors":"Aprianur Fajri, A. Prabowo, N. Muhayat","doi":"10.1515/cls-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a numerical procedure based on the finite element (FE) method using ANSYS Workbench software to analyse fatigue phenomena in ship structures. Fatigue failure prediction is used as a stress–life approach, when the stress is still in a linear area. This condition is frequently referred as high-cycle fatigue. Five geometric shapes taken from midship points on the structure of a ship are sampled. There are four types of materials: HSLA SAE 950X, medium-carbon steel, SAE 316L, and SAE 304L. The types of loading imposed on each sample include three conditions: zero-based, zero mean, and ratio. Mesh convergence analysis is conducted to determine the most effective mesh shape and size for analysing the structure. The results showed that the configuration of the geometric shapes, materials used, loading schemes, and mean stress theory affect the fatigue characteristics of the structure.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"163 - 186"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Assessment of ship structure under fatigue loading: FE benchmarking and extended performance analysis\",\"authors\":\"Aprianur Fajri, A. Prabowo, N. Muhayat\",\"doi\":\"10.1515/cls-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a numerical procedure based on the finite element (FE) method using ANSYS Workbench software to analyse fatigue phenomena in ship structures. Fatigue failure prediction is used as a stress–life approach, when the stress is still in a linear area. This condition is frequently referred as high-cycle fatigue. Five geometric shapes taken from midship points on the structure of a ship are sampled. There are four types of materials: HSLA SAE 950X, medium-carbon steel, SAE 316L, and SAE 304L. The types of loading imposed on each sample include three conditions: zero-based, zero mean, and ratio. Mesh convergence analysis is conducted to determine the most effective mesh shape and size for analysing the structure. The results showed that the configuration of the geometric shapes, materials used, loading schemes, and mean stress theory affect the fatigue characteristics of the structure.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"163 - 186\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Assessment of ship structure under fatigue loading: FE benchmarking and extended performance analysis
Abstract This paper presents a numerical procedure based on the finite element (FE) method using ANSYS Workbench software to analyse fatigue phenomena in ship structures. Fatigue failure prediction is used as a stress–life approach, when the stress is still in a linear area. This condition is frequently referred as high-cycle fatigue. Five geometric shapes taken from midship points on the structure of a ship are sampled. There are four types of materials: HSLA SAE 950X, medium-carbon steel, SAE 316L, and SAE 304L. The types of loading imposed on each sample include three conditions: zero-based, zero mean, and ratio. Mesh convergence analysis is conducted to determine the most effective mesh shape and size for analysing the structure. The results showed that the configuration of the geometric shapes, materials used, loading schemes, and mean stress theory affect the fatigue characteristics of the structure.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.