由单向街道网格生成的算术三角形

Q4 Social Sciences
T. Richmond, Mia Sword
{"title":"由单向街道网格生成的算术三角形","authors":"T. Richmond, Mia Sword","doi":"10.1080/07468342.2023.2186083","DOIUrl":null,"url":null,"abstract":"Summary Pascal’s triangle arises by counting the number of shortest paths from (0, 0) to (n, k) on a square street grid. The length of the shortest path is the Manhattan distance from (0, 0) to (n, k). We consider the case of a square street grid of one-way streets, with successive parallel streets being oppositely directed. We investigate the associated distance function q (which is only a quasi-metric, since q(A, B) may differ from q(B, A)) and the arithmetic triangle obtained by counting shortest routes on the one-way grid from (0, 0) to (n, k).","PeriodicalId":38710,"journal":{"name":"College Mathematics Journal","volume":"54 1","pages":"113 - 122"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Arithmetic Triangle Arising From a One-Way Street Grid\",\"authors\":\"T. Richmond, Mia Sword\",\"doi\":\"10.1080/07468342.2023.2186083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Pascal’s triangle arises by counting the number of shortest paths from (0, 0) to (n, k) on a square street grid. The length of the shortest path is the Manhattan distance from (0, 0) to (n, k). We consider the case of a square street grid of one-way streets, with successive parallel streets being oppositely directed. We investigate the associated distance function q (which is only a quasi-metric, since q(A, B) may differ from q(B, A)) and the arithmetic triangle obtained by counting shortest routes on the one-way grid from (0, 0) to (n, k).\",\"PeriodicalId\":38710,\"journal\":{\"name\":\"College Mathematics Journal\",\"volume\":\"54 1\",\"pages\":\"113 - 122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"College Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07468342.2023.2186083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"College Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07468342.2023.2186083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要Pascal三角形是通过计算正方形街道网格上从(0,0)到(n,k)的最短路径数而产生的。最短路径的长度是从(0,0)到(n,k)的曼哈顿距离。我们考虑单向街道的方形街道网格的情况,连续的平行街道方向相反。我们研究了相关的距离函数q(它只是一个准度量,因为q(a,B)可能不同于q(B,a))和通过计算单向网格上从(0,0)到(n,k)的最短路径而获得的算术三角形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Arithmetic Triangle Arising From a One-Way Street Grid
Summary Pascal’s triangle arises by counting the number of shortest paths from (0, 0) to (n, k) on a square street grid. The length of the shortest path is the Manhattan distance from (0, 0) to (n, k). We consider the case of a square street grid of one-way streets, with successive parallel streets being oppositely directed. We investigate the associated distance function q (which is only a quasi-metric, since q(A, B) may differ from q(B, A)) and the arithmetic triangle obtained by counting shortest routes on the one-way grid from (0, 0) to (n, k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
College Mathematics Journal
College Mathematics Journal Social Sciences-Education
CiteScore
0.20
自引率
0.00%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信