{"title":"广义分数积分的新中点型不等式","authors":"H. Budak, Hasan Kara, Rabia Kapucu","doi":"10.22034/CMDE.2020.40684.1772","DOIUrl":null,"url":null,"abstract":"In this paper, we first establish two new identities for differentiable function involving generalized fractional integrals. Then, by utilizing these equalities, we obtain some midpoint type inequalities involving generalized fractional integrals for mappings whose derivatives in absolute values are convex. We also give several results as special cases of our main results.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"New midpoint type inequalities for generalized fractional integral\",\"authors\":\"H. Budak, Hasan Kara, Rabia Kapucu\",\"doi\":\"10.22034/CMDE.2020.40684.1772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first establish two new identities for differentiable function involving generalized fractional integrals. Then, by utilizing these equalities, we obtain some midpoint type inequalities involving generalized fractional integrals for mappings whose derivatives in absolute values are convex. We also give several results as special cases of our main results.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.40684.1772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.40684.1772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
New midpoint type inequalities for generalized fractional integral
In this paper, we first establish two new identities for differentiable function involving generalized fractional integrals. Then, by utilizing these equalities, we obtain some midpoint type inequalities involving generalized fractional integrals for mappings whose derivatives in absolute values are convex. We also give several results as special cases of our main results.