具有不精确弯曲刚度表示的梁的后验误差估计

IF 0.8 Q2 MATHEMATICS
A. Torii, Paula M.A. Gracite, L. F. Miguel, R. Lopez
{"title":"具有不精确弯曲刚度表示的梁的后验误差估计","authors":"A. Torii, Paula M.A. Gracite, L. F. Miguel, R. Lopez","doi":"10.17512/jamcm.2023.2.06","DOIUrl":null,"url":null,"abstract":". In this work, we present a posteriori error estimates for the Euler-Bernoulli beam theory with inexact flexural stiffness representation. This is an important subject in practice because beams with non-uniform flexural stiffness are frequently modeled using a mesh of elements with constant stiffness. The error estimates obtained in this work are validated by means of two numerical examples. The estimates presented here can be employed for adaptive mesh refinement. MSC 2010: 74K10, 65N15","PeriodicalId":43867,"journal":{"name":"Journal of Applied Mathematics and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A posteriori error estimates for beams with inexact flexural stiffness representation\",\"authors\":\"A. Torii, Paula M.A. Gracite, L. F. Miguel, R. Lopez\",\"doi\":\"10.17512/jamcm.2023.2.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this work, we present a posteriori error estimates for the Euler-Bernoulli beam theory with inexact flexural stiffness representation. This is an important subject in practice because beams with non-uniform flexural stiffness are frequently modeled using a mesh of elements with constant stiffness. The error estimates obtained in this work are validated by means of two numerical examples. The estimates presented here can be employed for adaptive mesh refinement. MSC 2010: 74K10, 65N15\",\"PeriodicalId\":43867,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17512/jamcm.2023.2.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17512/jamcm.2023.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了具有不精确弯曲刚度表示的欧拉-伯努利梁理论的后验误差估计。这在实践中是一个重要的主题,因为具有非均匀弯曲刚度的梁经常使用具有恒定刚度的单元网格进行建模。通过两个算例验证了本文中得到的误差估计。这里给出的估计可以用于自适应网格细化。MSC 2010:74K10,65N15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A posteriori error estimates for beams with inexact flexural stiffness representation
. In this work, we present a posteriori error estimates for the Euler-Bernoulli beam theory with inexact flexural stiffness representation. This is an important subject in practice because beams with non-uniform flexural stiffness are frequently modeled using a mesh of elements with constant stiffness. The error estimates obtained in this work are validated by means of two numerical examples. The estimates presented here can be employed for adaptive mesh refinement. MSC 2010: 74K10, 65N15
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
30
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信