奇异分数阶边值问题迭代系统的无穷多个非负解

IF 1.1 Q2 MATHEMATICS, APPLIED
Khuddush Mahammad, K. R. Prasad, P. Veeraiah
{"title":"奇异分数阶边值问题迭代系统的无穷多个非负解","authors":"Khuddush Mahammad, K. R. Prasad, P. Veeraiah","doi":"10.22034/CMDE.2020.41028.1780","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the iterative system of singular Rimean-Liouville fractional order boundary value problems with RiemannStieltjes integral boundary conditions involving increasing homeomorphism and positive homomorphism operator(IHPHO). By using Krasnoselskii’s cone fixed point theorem in a Banach space, we derive sufficent conditions for the existence of infinite number of nonnegative solutions. The sufficient conditions are also derived for the existence of unique nonnegative solution to the addressed problem by fixed point theorem in a complete metric space. As an application, we present an example to illustrate the main results.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An infinite number of nonnegative solutions for iterative system of singular fractional order boundary value problems\",\"authors\":\"Khuddush Mahammad, K. R. Prasad, P. Veeraiah\",\"doi\":\"10.22034/CMDE.2020.41028.1780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the iterative system of singular Rimean-Liouville fractional order boundary value problems with RiemannStieltjes integral boundary conditions involving increasing homeomorphism and positive homomorphism operator(IHPHO). By using Krasnoselskii’s cone fixed point theorem in a Banach space, we derive sufficent conditions for the existence of infinite number of nonnegative solutions. The sufficient conditions are also derived for the existence of unique nonnegative solution to the addressed problem by fixed point theorem in a complete metric space. As an application, we present an example to illustrate the main results.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.41028.1780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.41028.1780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑奇异Rimean-Liouville分数阶边值问题的迭代系统,其Riemann-Stieltjes积分边界条件涉及增加同胚和正同态算子(IHPHO)。利用Banach空间中的Krasnoselskii锥不动点定理,导出了无穷多个非负解存在的充分条件。在完备度量空间中,利用不动点定理导出了问题存在唯一非负解的充分条件。作为一个应用,我们给出了一个例子来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An infinite number of nonnegative solutions for iterative system of singular fractional order boundary value problems
In this paper, we consider the iterative system of singular Rimean-Liouville fractional order boundary value problems with RiemannStieltjes integral boundary conditions involving increasing homeomorphism and positive homomorphism operator(IHPHO). By using Krasnoselskii’s cone fixed point theorem in a Banach space, we derive sufficent conditions for the existence of infinite number of nonnegative solutions. The sufficient conditions are also derived for the existence of unique nonnegative solution to the addressed problem by fixed point theorem in a complete metric space. As an application, we present an example to illustrate the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信