{"title":"幂零李群*上左不变伪黎曼度量的分类","authors":"Yuji Kondo","doi":"10.32917/h2021054","DOIUrl":null,"url":null,"abstract":"It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling and automorphisms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of left-invariant pseudo-Riemannian metrics on some nilpotent Lie groups*\",\"authors\":\"Yuji Kondo\",\"doi\":\"10.32917/h2021054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling and automorphisms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2021054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2021054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A classification of left-invariant pseudo-Riemannian metrics on some nilpotent Lie groups*
It is known that a connected and simply-connected Lie group admits only one left-invariant Riemannian metric up to scaling and isometry if and only if it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the direct product of the three dimensional Heisenberg group and the Euclidean space of dimension n − 3. In this paper, we give a classification of left-invariant pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling and automorphisms.