Wei Wang, She-ming Fan, Y. You, Cheng Zhao, Liqun Xu, Guibiao Wang, Zhiqiang Lu
{"title":"倒角射孔对单浮平台垂度和节距影响的研究","authors":"Wei Wang, She-ming Fan, Y. You, Cheng Zhao, Liqun Xu, Guibiao Wang, Zhiqiang Lu","doi":"10.2478/pomr-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this work is to study the influence of chamfered perforation and chamfering on the heave and pitch motion of a single floating wind power platform with an anti-heave device. Firstly, the hydrodynamic performance of a single floating body with different chamfers, or without perforation, is calculated and analysed. Secondly, the motion of a model without perforation and with 35° chamfered perforation is captured and studied in a towing tank. The results show that when the wave height is large and the period is small, the perforated device has a certain effect. When the wave height and period are small, the pitch suppression effect of chamfered perforation is more obvious than that of non-chamfered perforation. When the period and wave height are large, the heave suppression effect of non-chamfered perforation is better than that of chamfered perforation. In experimental research, the perforated floating body has a certain effect on restraining the heave and pitch of a floating body under most working conditions, and the effect of restraining the pitch is obviously better than that of restraining the heave.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"30 1","pages":"43 - 53"},"PeriodicalIF":2.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Influence of Chamfer Perforation on Heave and Pitch of a Single Floating Platform\",\"authors\":\"Wei Wang, She-ming Fan, Y. You, Cheng Zhao, Liqun Xu, Guibiao Wang, Zhiqiang Lu\",\"doi\":\"10.2478/pomr-2023-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this work is to study the influence of chamfered perforation and chamfering on the heave and pitch motion of a single floating wind power platform with an anti-heave device. Firstly, the hydrodynamic performance of a single floating body with different chamfers, or without perforation, is calculated and analysed. Secondly, the motion of a model without perforation and with 35° chamfered perforation is captured and studied in a towing tank. The results show that when the wave height is large and the period is small, the perforated device has a certain effect. When the wave height and period are small, the pitch suppression effect of chamfered perforation is more obvious than that of non-chamfered perforation. When the period and wave height are large, the heave suppression effect of non-chamfered perforation is better than that of chamfered perforation. In experimental research, the perforated floating body has a certain effect on restraining the heave and pitch of a floating body under most working conditions, and the effect of restraining the pitch is obviously better than that of restraining the heave.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"30 1\",\"pages\":\"43 - 53\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0005\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Study on the Influence of Chamfer Perforation on Heave and Pitch of a Single Floating Platform
Abstract The aim of this work is to study the influence of chamfered perforation and chamfering on the heave and pitch motion of a single floating wind power platform with an anti-heave device. Firstly, the hydrodynamic performance of a single floating body with different chamfers, or without perforation, is calculated and analysed. Secondly, the motion of a model without perforation and with 35° chamfered perforation is captured and studied in a towing tank. The results show that when the wave height is large and the period is small, the perforated device has a certain effect. When the wave height and period are small, the pitch suppression effect of chamfered perforation is more obvious than that of non-chamfered perforation. When the period and wave height are large, the heave suppression effect of non-chamfered perforation is better than that of chamfered perforation. In experimental research, the perforated floating body has a certain effect on restraining the heave and pitch of a floating body under most working conditions, and the effect of restraining the pitch is obviously better than that of restraining the heave.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.