奇异对称微分算子的Friedrichs推广

IF 0.8 4区 数学 Q2 MATHEMATICS
Qinglan Bao, Guangsheng Wei, A. Zettl
{"title":"奇异对称微分算子的Friedrichs推广","authors":"Qinglan Bao, Guangsheng Wei, A. Zettl","doi":"10.58997/ejde.sp.02.b1","DOIUrl":null,"url":null,"abstract":"For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.\nSee also https://ejde.math.txstate.edu/special/02/b1/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Friedrichs extension of singular symmetric differential operators\",\"authors\":\"Qinglan Bao, Guangsheng Wei, A. Zettl\",\"doi\":\"10.58997/ejde.sp.02.b1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension.\\nSee also https://ejde.math.txstate.edu/special/02/b1/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.sp.02.b1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.b1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于奇偶数阶对称微分算子,我们找到了确定极小算子的所有对称扩展的矩阵。对于下面有界的每一个对称算子,我们都得到了它的Friedrichs扩张的边界条件。正则问题的算子在下面有界,因此每个算子都有一个对称扩展,因此它的对称扩展有一个Friedrichs扩展。另请参阅https://ejde.math.txstate.edu/special/02/b1/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Friedrichs extension of singular symmetric differential operators
For singular even order symmetric differential operators we find the matrices which determine all symmetric extensions of the minimal operator. And for each of these symmetric operators which is bounded below we find the boundary condition of its Friedrichs extension. The operators of regular problems are bounded below and thus each one has a symmetric extension and thus its symmetric extension has a Friedrichs extension. See also https://ejde.math.txstate.edu/special/02/b1/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信