{"title":"滴流床反应器中铁基催化剂上苯酚的非均相催化臭氧化","authors":"Luis Briceño Mena, Esteban Durán Herrera","doi":"10.15517/ri.v30i2.39236","DOIUrl":null,"url":null,"abstract":"The use of continuous reactors for heterogeneous catalytic ozonation is yet to be investigated in order to develop a viable technology for industrial applications. This paper presents hydrodynamic and degradation studies on the use of a co-current down flow trickle bed reactor for heterogeneous catalytic ozonation of phenol (as model pollutant) over Fe-Diatomite pellets and Fe-coated glass beads. It was found that the reactor can operate under trickle or pulsing flow regimes, promoting mass transfer augmentation. Residence time distribution data, fitted with n-CSTR and axial dispersion (ADM) models, showed low axial dispersion and high flow distribution. Just the Fe-diatomite pellets showed important phenol adsorption (16 %). Degradation experiments demonstrated that phenol conversion was substantial when using both catalysts, up to 19,7 % pollutant conversion with liquid-phase space times of just 6 s. Compared to direct ozonation, the use of the Fe-diatomite pellets and Fe-coated glass beads enhanced the reactor performance by 48 % and 23 %, respectively. It was confirmed that mass transfer is an important factor that restricts this reaction system performance; consequently, further improvement in mass transport rate is necessary for system optimization.","PeriodicalId":41509,"journal":{"name":"Ingenieria","volume":"30 1","pages":"1-13"},"PeriodicalIF":0.1000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Catalytic Ozonation of Phenol over Iron-based Catalysts in a Trickle Bed Reactor\",\"authors\":\"Luis Briceño Mena, Esteban Durán Herrera\",\"doi\":\"10.15517/ri.v30i2.39236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of continuous reactors for heterogeneous catalytic ozonation is yet to be investigated in order to develop a viable technology for industrial applications. This paper presents hydrodynamic and degradation studies on the use of a co-current down flow trickle bed reactor for heterogeneous catalytic ozonation of phenol (as model pollutant) over Fe-Diatomite pellets and Fe-coated glass beads. It was found that the reactor can operate under trickle or pulsing flow regimes, promoting mass transfer augmentation. Residence time distribution data, fitted with n-CSTR and axial dispersion (ADM) models, showed low axial dispersion and high flow distribution. Just the Fe-diatomite pellets showed important phenol adsorption (16 %). Degradation experiments demonstrated that phenol conversion was substantial when using both catalysts, up to 19,7 % pollutant conversion with liquid-phase space times of just 6 s. Compared to direct ozonation, the use of the Fe-diatomite pellets and Fe-coated glass beads enhanced the reactor performance by 48 % and 23 %, respectively. It was confirmed that mass transfer is an important factor that restricts this reaction system performance; consequently, further improvement in mass transport rate is necessary for system optimization.\",\"PeriodicalId\":41509,\"journal\":{\"name\":\"Ingenieria\",\"volume\":\"30 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenieria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15517/ri.v30i2.39236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15517/ri.v30i2.39236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Heterogeneous Catalytic Ozonation of Phenol over Iron-based Catalysts in a Trickle Bed Reactor
The use of continuous reactors for heterogeneous catalytic ozonation is yet to be investigated in order to develop a viable technology for industrial applications. This paper presents hydrodynamic and degradation studies on the use of a co-current down flow trickle bed reactor for heterogeneous catalytic ozonation of phenol (as model pollutant) over Fe-Diatomite pellets and Fe-coated glass beads. It was found that the reactor can operate under trickle or pulsing flow regimes, promoting mass transfer augmentation. Residence time distribution data, fitted with n-CSTR and axial dispersion (ADM) models, showed low axial dispersion and high flow distribution. Just the Fe-diatomite pellets showed important phenol adsorption (16 %). Degradation experiments demonstrated that phenol conversion was substantial when using both catalysts, up to 19,7 % pollutant conversion with liquid-phase space times of just 6 s. Compared to direct ozonation, the use of the Fe-diatomite pellets and Fe-coated glass beads enhanced the reactor performance by 48 % and 23 %, respectively. It was confirmed that mass transfer is an important factor that restricts this reaction system performance; consequently, further improvement in mass transport rate is necessary for system optimization.