卡诺群拟线性偏微分方程的黎曼近似正则性

IF 0.2 Q4 MATHEMATICS
A. Domokos, J. Manfredi
{"title":"卡诺群拟线性偏微分方程的黎曼近似正则性","authors":"A. Domokos, J. Manfredi","doi":"10.6092/ISSN.2240-2829/10589","DOIUrl":null,"url":null,"abstract":"We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0.Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on the step ν and the homogeneous dimension Q of the group, and it is given byp* = min {2ν ∕ ν-1 , 2Q+8 ∕ Q-2}.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"11 1","pages":"119-142"},"PeriodicalIF":0.2000,"publicationDate":"2020-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation\",\"authors\":\"A. Domokos, J. Manfredi\",\"doi\":\"10.6092/ISSN.2240-2829/10589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0.Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on the step ν and the homogeneous dimension Q of the group, and it is given byp* = min {2ν ∕ ν-1 , 2Q+8 ∕ Q-2}.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"11 1\",\"pages\":\"119-142\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0的Carnot群中亚椭圆型拟线性偏微分方程弱解的内正则性。其中∇Hu = (X1u,…,Xmiu)为水平梯度δ >,指数p∈[2,p*),其中p*取决于阶跃ν和群的齐次维数Q,由p* = min {2ν∕ν- 1,2q +8∕Q-2}给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity for quasilinear PDEs in Carnot groups via Riemannian approximation
We study the interior regularity of weak solutions to subelliptic quasilinear PDEs in Carnot groups of the formΣi=1m1Xi (Φ(|∇Hu|2)Xiu) = 0.Here ∇Hu = (X1u,...,Xmiu) is the horizontal gradient, δ > 0 and the exponent p ∈ [2, p*), where p* depends on the step ν and the homogeneous dimension Q of the group, and it is given byp* = min {2ν ∕ ν-1 , 2Q+8 ∕ Q-2}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信