Hecke对的粗糙几何和baum - connes猜想

Pub Date : 2021-12-19 DOI:10.2140/pjm.2023.322.21
Cl'ement Dell'Aiera
{"title":"Hecke对的粗糙几何和baum - connes猜想","authors":"Cl'ement Dell'Aiera","doi":"10.2140/pjm.2023.322.21","DOIUrl":null,"url":null,"abstract":"We study Hecke pairs using the coarse geometry of their coset space and their Schlichting completion. We prove new stability results for the Baum-Connes and the Novikov conjectures in the case where the pair is co-Haagerup. This allows to generalize previous results, while providing new examples of groups satisfying the Baum-Connes conjecture with coefficients. For instance, we show that for some S-arithmetic subgroups of Sp(5,1) and Sp(3,1) the conjecture with coefficients holds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse geometry of Hecke pairs and the\\nBaum–Connes conjecture\",\"authors\":\"Cl'ement Dell'Aiera\",\"doi\":\"10.2140/pjm.2023.322.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Hecke pairs using the coarse geometry of their coset space and their Schlichting completion. We prove new stability results for the Baum-Connes and the Novikov conjectures in the case where the pair is co-Haagerup. This allows to generalize previous results, while providing new examples of groups satisfying the Baum-Connes conjecture with coefficients. For instance, we show that for some S-arithmetic subgroups of Sp(5,1) and Sp(3,1) the conjecture with coefficients holds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用Hecke对的协集空间及其Schlichting补全的粗糙几何来研究Hecke对。我们证明了Baum-Connes猜想和Novikov猜想在共haagerup情况下的新的稳定性结果。这允许推广以前的结果,同时提供新的例子群满足Baum-Connes猜想与系数。例如,我们证明了对于Sp(5,1)和Sp(3,1)的一些s算术子群,带系数猜想成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Coarse geometry of Hecke pairs and the Baum–Connes conjecture
We study Hecke pairs using the coarse geometry of their coset space and their Schlichting completion. We prove new stability results for the Baum-Connes and the Novikov conjectures in the case where the pair is co-Haagerup. This allows to generalize previous results, while providing new examples of groups satisfying the Baum-Connes conjecture with coefficients. For instance, we show that for some S-arithmetic subgroups of Sp(5,1) and Sp(3,1) the conjecture with coefficients holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信