{"title":"火成岩协会哥伦比亚河玄武岩群中的亲铜和铂族元素:洪水玄武岩熔岩的一种模式","authors":"S. Reidel, D. Barnett","doi":"10.12789/geocanj.2020.47.166","DOIUrl":null,"url":null,"abstract":"The Columbia River Basalt Group is the youngest and best preserved continental Large Igneous Province on Earth. The 210,000 km3 of basaltic lavas were erupted between 16.6 and 5 Ma in the Pacific Northwest, USA. The peak of the eruptions occurred over a 700,000-year period when nearly 99% of the basalts consisting of the Steens, Imnaha, Picture Gorge, Grande Ronde and Wanapum Basalts were emplaced. In this study we examined the Platinum Group Elements (PGEs) Pt and Pd, and the chalcophile elements Cu and Zn in the Columbia River Basalt Group. The presence of Pt, Pd and Cu in the compositionally primitive Lower Steens, Imnaha and Picture Gorge Basalts suggests that the Columbia River Basalt Group magma was a fertile source for these elements. The PGEs are contained mainly in sulphides in the earliest formations based on their correlation with immiscible sulphides, sulphide minerals and chalcophile elements. Grande Ronde, Wanapum and Saddle Mountains Basalts are depleted in PGEs and chalcophile elements compared to earlier formations. Sulphur was saturated in many flows and much of it probably came from assimilation of cratonic rock from a thinned lithosphere. We propose a model where the presence or absence of PGEs and chalcophile elements results primarily from the interaction between an advancing plume head and the crust/lithosphere that it encountered. The early lavas erupted from a plume that had little interaction with the crust/lithosphere and were fertile. However, as the plume head advanced northward, it assimilated crustal/lithospheric material and PGE and chalcophile elements were depleted from the magma. What little PGE and chalcophile elements remained in the compositionally evolved and depleted Grande Ronde Basalt flows mainly were controlled by substitution in basalt minerals and not available for inclusion in sulphides. \n ","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Igneous Rock Associations 27. Chalcophile and Platinum Group Elements in the Columbia River Basalt Group: A Model for Flood Basalt Lavas\",\"authors\":\"S. Reidel, D. Barnett\",\"doi\":\"10.12789/geocanj.2020.47.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Columbia River Basalt Group is the youngest and best preserved continental Large Igneous Province on Earth. The 210,000 km3 of basaltic lavas were erupted between 16.6 and 5 Ma in the Pacific Northwest, USA. The peak of the eruptions occurred over a 700,000-year period when nearly 99% of the basalts consisting of the Steens, Imnaha, Picture Gorge, Grande Ronde and Wanapum Basalts were emplaced. In this study we examined the Platinum Group Elements (PGEs) Pt and Pd, and the chalcophile elements Cu and Zn in the Columbia River Basalt Group. The presence of Pt, Pd and Cu in the compositionally primitive Lower Steens, Imnaha and Picture Gorge Basalts suggests that the Columbia River Basalt Group magma was a fertile source for these elements. The PGEs are contained mainly in sulphides in the earliest formations based on their correlation with immiscible sulphides, sulphide minerals and chalcophile elements. Grande Ronde, Wanapum and Saddle Mountains Basalts are depleted in PGEs and chalcophile elements compared to earlier formations. Sulphur was saturated in many flows and much of it probably came from assimilation of cratonic rock from a thinned lithosphere. We propose a model where the presence or absence of PGEs and chalcophile elements results primarily from the interaction between an advancing plume head and the crust/lithosphere that it encountered. The early lavas erupted from a plume that had little interaction with the crust/lithosphere and were fertile. However, as the plume head advanced northward, it assimilated crustal/lithospheric material and PGE and chalcophile elements were depleted from the magma. What little PGE and chalcophile elements remained in the compositionally evolved and depleted Grande Ronde Basalt flows mainly were controlled by substitution in basalt minerals and not available for inclusion in sulphides. \\n \",\"PeriodicalId\":55106,\"journal\":{\"name\":\"Geoscience Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Canada\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.12789/geocanj.2020.47.166\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Canada","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.12789/geocanj.2020.47.166","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Igneous Rock Associations 27. Chalcophile and Platinum Group Elements in the Columbia River Basalt Group: A Model for Flood Basalt Lavas
The Columbia River Basalt Group is the youngest and best preserved continental Large Igneous Province on Earth. The 210,000 km3 of basaltic lavas were erupted between 16.6 and 5 Ma in the Pacific Northwest, USA. The peak of the eruptions occurred over a 700,000-year period when nearly 99% of the basalts consisting of the Steens, Imnaha, Picture Gorge, Grande Ronde and Wanapum Basalts were emplaced. In this study we examined the Platinum Group Elements (PGEs) Pt and Pd, and the chalcophile elements Cu and Zn in the Columbia River Basalt Group. The presence of Pt, Pd and Cu in the compositionally primitive Lower Steens, Imnaha and Picture Gorge Basalts suggests that the Columbia River Basalt Group magma was a fertile source for these elements. The PGEs are contained mainly in sulphides in the earliest formations based on their correlation with immiscible sulphides, sulphide minerals and chalcophile elements. Grande Ronde, Wanapum and Saddle Mountains Basalts are depleted in PGEs and chalcophile elements compared to earlier formations. Sulphur was saturated in many flows and much of it probably came from assimilation of cratonic rock from a thinned lithosphere. We propose a model where the presence or absence of PGEs and chalcophile elements results primarily from the interaction between an advancing plume head and the crust/lithosphere that it encountered. The early lavas erupted from a plume that had little interaction with the crust/lithosphere and were fertile. However, as the plume head advanced northward, it assimilated crustal/lithospheric material and PGE and chalcophile elements were depleted from the magma. What little PGE and chalcophile elements remained in the compositionally evolved and depleted Grande Ronde Basalt flows mainly were controlled by substitution in basalt minerals and not available for inclusion in sulphides.
期刊介绍:
Established in 1974, Geoscience Canada is the main technical publication of the Geological Association of Canada (GAC). We are a quarterly journal that emphasizes diversity of material, and also the presentation of informative technical articles that can be understood not only by specialist research workers, but by non-specialists in other branches of the Earth Sciences. We aim to be a journal that you want to read, and which will leave you better informed, rather than more confused.