{"title":"Dunkl环境下Orlicz空间上极大交换子的有界性","authors":"Vagif S. Guliyev sci","doi":"10.4208/jms.v53n1.20.03","DOIUrl":null,"url":null,"abstract":"On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting\",\"authors\":\"Vagif S. Guliyev sci\",\"doi\":\"10.4208/jms.v53n1.20.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n1.20.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n1.20.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
实线,Dunkl运营商Dν(f) (x): = D f (x) dx +(2ν+ 1)f (x)−f (x)−2 x, x∀∈R,∀ν≥−1 2差分微分算子与反射相关集团Z2 R和Rd Dunkl运营商{Dk j} D j = 1是差分微分算子与反射相关集团Zd 2 R D。本文在设置R我们表明,b∈蒙特利尔银行(R, dmν)当且仅当最大换向器Mb,νOrlicz上有界空间LΦ(R, dmν)。同样在集合Rd中,我们证明了b∈BMO(R,hk(x)dx)当且仅当最大换向子Mb,k在Orlicz空间LΦ(R,hk(x)dx)上有界。AMS学科分类:42B20, 42B25, 42B35
Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting
On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35
期刊介绍:
Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.