Dunkl环境下Orlicz空间上极大交换子的有界性

IF 0.8 4区 数学
Vagif S. Guliyev sci
{"title":"Dunkl环境下Orlicz空间上极大交换子的有界性","authors":"Vagif S. Guliyev sci","doi":"10.4208/jms.v53n1.20.03","DOIUrl":null,"url":null,"abstract":"On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting\",\"authors\":\"Vagif S. Guliyev sci\",\"doi\":\"10.4208/jms.v53n1.20.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jms.v53n1.20.03\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jms.v53n1.20.03","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实线,Dunkl运营商Dν(f) (x): = D f (x) dx +(2ν+ 1)f (x)−f (x)−2 x, x∀∈R,∀ν≥−1 2差分微分算子与反射相关集团Z2 R和Rd Dunkl运营商{Dk j} D j = 1是差分微分算子与反射相关集团Zd 2 R D。本文在设置R我们表明,b∈蒙特利尔银行(R, dmν)当且仅当最大换向器Mb,νOrlicz上有界空间LΦ(R, dmν)。同样在集合Rd中,我们证明了b∈BMO(R,hk(x)dx)当且仅当最大换向子Mb,k在Orlicz空间LΦ(R,hk(x)dx)上有界。AMS学科分类:42B20, 42B25, 42B35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness Characterization of Maximal Commutators on Orlicz Spaces in the Dunkl Setting
On the real line, the Dunkl operators Dν( f )(x) := d f (x) dx +(2ν+1) f (x)− f (−x) 2x , ∀x∈R, ∀ν≥− 1 2 are differential-difference operators associated with the reflection group Z2 on R, and on the Rd the Dunkl operators { Dk,j }d j=1 are the differential-difference operators associated with the reflection group Zd 2 on R d. In this paper, in the setting R we show that b ∈ BMO(R,dmν) if and only if the maximal commutator Mb,ν is bounded on Orlicz spaces LΦ(R,dmν). Also in the setting Rd we show that b∈ BMO(R,hk(x)dx) if and only if the maximal commutator Mb,k is bounded on Orlicz spaces LΦ(R,hk(x)dx). AMS subject classifications: 42B20, 42B25, 42B35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信