目的:开发先进的深露天矿矿内破碎输送技术

Q4 Engineering
A. Zhuravlev, A. Semenkin, V. Cherepanov, I. Glebov, M. A. Chendyrev
{"title":"目的:开发先进的深露天矿矿内破碎输送技术","authors":"A. Zhuravlev, A. Semenkin, V. Cherepanov, I. Glebov, M. A. Chendyrev","doi":"10.30686/1609-9192-2022-1s-53-62","DOIUrl":null,"url":null,"abstract":"The development of open pits, both in terms of their mining intensity and a significant increase in the current and design depth, requires improvement of transport systems that form the bulk of the production cost. One of the most proven types of combined transport that provides high productivity is the truck-and-conveyor system. Therefore, this paper focuses on its adaptation to the future mining conditions (high dynamics of open pit mining development with creation of deep quarries, the need to reach open pit depths of up to 800–1200 m). The field of application of different types of transport is not static and changes along with the technical development of transport means, their introduction into mass production, and a change in the target group of mining and operating conditions. The article provides a systematization of open-pit transport applicable in modern conditions and shows the experience gained by the Institute of Mining of Ural branch of RAS in the in-pit crushing and conveying technology, mobile (semi-stationary) crushing and reloading plants and self-propelled crushing units. The results of calculations and technical and economic parameters of open-pit truck haulage and conveyor transport in a wide range of mining conditions are described. It is shown that an urgent research and engineering challenge is the development of technologies for the phased introduction of high-performance equipment for in-pit crushing and conveying transport to a great depth with a minimal additional extension of the open pit walls. At the same time, it is possible to use both steeply inclined and traditional belt conveyors, depending on the specific operating conditions. Conveyor transport is preferable for use at the main stage of the life cycle of deep quarries in terms of its efficiency and throughput, but its use is constrained by a number of factors considered in the paper.","PeriodicalId":36119,"journal":{"name":"Gornaya Promyshlennost","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The purpose of developing advanced in-pit crushing and conveying technology for deep open pits\",\"authors\":\"A. Zhuravlev, A. Semenkin, V. Cherepanov, I. Glebov, M. A. Chendyrev\",\"doi\":\"10.30686/1609-9192-2022-1s-53-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of open pits, both in terms of their mining intensity and a significant increase in the current and design depth, requires improvement of transport systems that form the bulk of the production cost. One of the most proven types of combined transport that provides high productivity is the truck-and-conveyor system. Therefore, this paper focuses on its adaptation to the future mining conditions (high dynamics of open pit mining development with creation of deep quarries, the need to reach open pit depths of up to 800–1200 m). The field of application of different types of transport is not static and changes along with the technical development of transport means, their introduction into mass production, and a change in the target group of mining and operating conditions. The article provides a systematization of open-pit transport applicable in modern conditions and shows the experience gained by the Institute of Mining of Ural branch of RAS in the in-pit crushing and conveying technology, mobile (semi-stationary) crushing and reloading plants and self-propelled crushing units. The results of calculations and technical and economic parameters of open-pit truck haulage and conveyor transport in a wide range of mining conditions are described. It is shown that an urgent research and engineering challenge is the development of technologies for the phased introduction of high-performance equipment for in-pit crushing and conveying transport to a great depth with a minimal additional extension of the open pit walls. At the same time, it is possible to use both steeply inclined and traditional belt conveyors, depending on the specific operating conditions. Conveyor transport is preferable for use at the main stage of the life cycle of deep quarries in terms of its efficiency and throughput, but its use is constrained by a number of factors considered in the paper.\",\"PeriodicalId\":36119,\"journal\":{\"name\":\"Gornaya Promyshlennost\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gornaya Promyshlennost\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30686/1609-9192-2022-1s-53-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gornaya Promyshlennost","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30686/1609-9192-2022-1s-53-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

露天矿的开发,无论是从开采强度还是当前和设计深度的显著增加来看,都需要改进构成大部分生产成本的运输系统。卡车和输送机系统是最成熟的可提供高生产率的组合运输类型之一。因此,本文重点关注其对未来采矿条件的适应(随着深采石场的建立,露天采矿发展的动态性很高,需要达到800–1200米的露天深度)。不同类型运输的应用领域并不是一成不变的,随着运输工具的技术发展、大规模生产的引入以及采矿和作业条件目标群体的变化而变化。本文介绍了适用于现代条件下的露天运输系统,并展示了RAS乌拉尔分公司采矿研究所在坑内破碎和运输技术、移动(半固定)破碎和再装载装置以及自行式破碎装置方面取得的经验。介绍了露天汽车运输和输送机运输在各种开采条件下的计算结果及技术经济参数。研究表明,一项紧迫的研究和工程挑战是开发技术,分阶段引入高性能设备,用于坑内破碎和输送至大深度,同时尽量减少露天坑壁的额外延伸。同时,根据具体的操作条件,可以同时使用急倾斜和传统的带式输送机。就其效率和吞吐量而言,输送机运输更适合在深层采石场生命周期的主要阶段使用,但其使用受到本文中考虑的许多因素的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The purpose of developing advanced in-pit crushing and conveying technology for deep open pits
The development of open pits, both in terms of their mining intensity and a significant increase in the current and design depth, requires improvement of transport systems that form the bulk of the production cost. One of the most proven types of combined transport that provides high productivity is the truck-and-conveyor system. Therefore, this paper focuses on its adaptation to the future mining conditions (high dynamics of open pit mining development with creation of deep quarries, the need to reach open pit depths of up to 800–1200 m). The field of application of different types of transport is not static and changes along with the technical development of transport means, their introduction into mass production, and a change in the target group of mining and operating conditions. The article provides a systematization of open-pit transport applicable in modern conditions and shows the experience gained by the Institute of Mining of Ural branch of RAS in the in-pit crushing and conveying technology, mobile (semi-stationary) crushing and reloading plants and self-propelled crushing units. The results of calculations and technical and economic parameters of open-pit truck haulage and conveyor transport in a wide range of mining conditions are described. It is shown that an urgent research and engineering challenge is the development of technologies for the phased introduction of high-performance equipment for in-pit crushing and conveying transport to a great depth with a minimal additional extension of the open pit walls. At the same time, it is possible to use both steeply inclined and traditional belt conveyors, depending on the specific operating conditions. Conveyor transport is preferable for use at the main stage of the life cycle of deep quarries in terms of its efficiency and throughput, but its use is constrained by a number of factors considered in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gornaya Promyshlennost
Gornaya Promyshlennost Engineering-Industrial and Manufacturing Engineering
CiteScore
1.10
自引率
0.00%
发文量
100
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信