广义误差分布的幂阶统计量的收敛速度

IF 0.7 Q3 STATISTICS & PROBABILITY
Yuhan Zou, Yingyin Lu, Zuoxiang Peng
{"title":"广义误差分布的幂阶统计量的收敛速度","authors":"Yuhan Zou, Yingyin Lu, Zuoxiang Peng","doi":"10.1080/24754269.2022.2146955","DOIUrl":null,"url":null,"abstract":"Let be a sequence of independent random variables with common general error distribution with shape parameter v>0, and let denote the r-th largest order statistics of . With different normalizing constants the distributional expansions and the uniform convergence rates of normalized powered order statistics are established. An alternative method is presented to estimate the probability of the r-th extremes. Numerical analyses are provided to support the main results.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"1 - 29"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rates of convergence of powered order statistics from general error distribution\",\"authors\":\"Yuhan Zou, Yingyin Lu, Zuoxiang Peng\",\"doi\":\"10.1080/24754269.2022.2146955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a sequence of independent random variables with common general error distribution with shape parameter v>0, and let denote the r-th largest order statistics of . With different normalizing constants the distributional expansions and the uniform convergence rates of normalized powered order statistics are established. An alternative method is presented to estimate the probability of the r-th extremes. Numerical analyses are provided to support the main results.\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"7 1\",\"pages\":\"1 - 29\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2022.2146955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2022.2146955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

设为形状参数v>0的具有一般误差分布的独立随机变量序列,并表示的r阶最大阶统计量。利用不同的归一化常数,建立了归一化幂阶统计量的分布展开式和一致收敛率。提出了一种估计第r个极值概率的替代方法。数值分析支持了主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rates of convergence of powered order statistics from general error distribution
Let be a sequence of independent random variables with common general error distribution with shape parameter v>0, and let denote the r-th largest order statistics of . With different normalizing constants the distributional expansions and the uniform convergence rates of normalized powered order statistics are established. An alternative method is presented to estimate the probability of the r-th extremes. Numerical analyses are provided to support the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信