Cu-Fe-CeO2-Al2O3-Cg功能梯度复合材料的摩擦学特性研究

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS
Vummitti Chandhan Kumar, K. Rajesh Kannan, G. Srivathsan, A. Vignesh Ram, Vallabhaneni Sravan, R. Vaira Vignesh, M. Govindaraju
{"title":"Cu-Fe-CeO2-Al2O3-Cg功能梯度复合材料的摩擦学特性研究","authors":"Vummitti Chandhan Kumar, K. Rajesh Kannan, G. Srivathsan, A. Vignesh Ram, Vallabhaneni Sravan, R. Vaira Vignesh, M. Govindaraju","doi":"10.1080/17515831.2022.2160160","DOIUrl":null,"url":null,"abstract":"ABSTRACT Copper-based functionally gradient composite material is developed using powder metallurgy processing technique, as a potential wind turbine brake pad material. The developed composite has a gradient composition of Cu, CeO2, Al2O3, Fe, and Cg to enable joint strength at the interface (brake calliper) and wear resistance at the contact surface (brake disc). The article presents a comprehensive analysis on the microstructure, microhardness, and tribological performance of the developed composite. The wear mechanism is deduced through surface morphology, elemental composition, and phase composition analysis using field emission scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffractometer, and X-ray photoelectron spectroscope. A maximum hardness of 198.2 HV was obtained at the contact surface. Experimental values from tribology tests show that a decreasing trend was obtained with a wear rate of 2.013 × 10−7 g N-m−1 and a friction coefficient was 0.215. GRAPHICAL ABSTRACT","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":"17 1","pages":"3 - 21"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological characterization of functionally gradient composite (Cu–Fe–CeO2–Al2O3–Cg) for wind turbine brake pad\",\"authors\":\"Vummitti Chandhan Kumar, K. Rajesh Kannan, G. Srivathsan, A. Vignesh Ram, Vallabhaneni Sravan, R. Vaira Vignesh, M. Govindaraju\",\"doi\":\"10.1080/17515831.2022.2160160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Copper-based functionally gradient composite material is developed using powder metallurgy processing technique, as a potential wind turbine brake pad material. The developed composite has a gradient composition of Cu, CeO2, Al2O3, Fe, and Cg to enable joint strength at the interface (brake calliper) and wear resistance at the contact surface (brake disc). The article presents a comprehensive analysis on the microstructure, microhardness, and tribological performance of the developed composite. The wear mechanism is deduced through surface morphology, elemental composition, and phase composition analysis using field emission scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffractometer, and X-ray photoelectron spectroscope. A maximum hardness of 198.2 HV was obtained at the contact surface. Experimental values from tribology tests show that a decreasing trend was obtained with a wear rate of 2.013 × 10−7 g N-m−1 and a friction coefficient was 0.215. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23331,\"journal\":{\"name\":\"Tribology - Materials, Surfaces & Interfaces\",\"volume\":\"17 1\",\"pages\":\"3 - 21\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology - Materials, Surfaces & Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17515831.2022.2160160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2022.2160160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

采用粉末冶金加工技术开发了铜基功能梯度复合材料,作为一种有潜力的风力发电机刹车片材料。所开发的复合材料具有Cu、CeO2、Al2O3、Fe和Cg的梯度组成,以提高界面(制动卡钳)的结合强度和接触面(制动盘)的耐磨性。本文对所研制的复合材料的显微组织、显微硬度和摩擦学性能进行了综合分析。利用场发射扫描电镜、能量色散x射线能谱仪、x射线衍射仪、x射线光电子能谱仪等对材料表面形貌、元素组成、相组成进行分析,推断磨损机理。接触表面的最大硬度为198.2 HV。摩擦学试验值表明,磨损率为2.013 × 10−7 g N-m−1,摩擦系数为0.215,磨损率呈下降趋势。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tribological characterization of functionally gradient composite (Cu–Fe–CeO2–Al2O3–Cg) for wind turbine brake pad
ABSTRACT Copper-based functionally gradient composite material is developed using powder metallurgy processing technique, as a potential wind turbine brake pad material. The developed composite has a gradient composition of Cu, CeO2, Al2O3, Fe, and Cg to enable joint strength at the interface (brake calliper) and wear resistance at the contact surface (brake disc). The article presents a comprehensive analysis on the microstructure, microhardness, and tribological performance of the developed composite. The wear mechanism is deduced through surface morphology, elemental composition, and phase composition analysis using field emission scanning electron microscope, energy dispersive X-ray spectroscope, X-ray diffractometer, and X-ray photoelectron spectroscope. A maximum hardness of 198.2 HV was obtained at the contact surface. Experimental values from tribology tests show that a decreasing trend was obtained with a wear rate of 2.013 × 10−7 g N-m−1 and a friction coefficient was 0.215. GRAPHICAL ABSTRACT
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信