评估混合太阳能集热器方案在伊拉克环境中的有效性

Q3 Engineering
Jaddoa Ameer A.
{"title":"评估混合太阳能集热器方案在伊拉克环境中的有效性","authors":"Jaddoa Ameer A.","doi":"10.31489/2023no2/57-64","DOIUrl":null,"url":null,"abstract":"An evaluation of the performance of the Iraqi environments in terms of electrical, thermal and exergy efficiency is introduced in this study. The research is carried out in May 2022, in the Baghdad metropolis. The extraction process of heat from the photovoltaic units which arises from the coolant liquid mass flow rate deem as an essential point. The experimental studies were implemented by absorbing heat energy behind from the photovoltaic cell's surface in insulated conditions and using a cooled water unit. The results indicated that at a mass inflow rate of 0.2 kg/sec, the maximum average total efficiency of the system was recorded 22%. As a result, it is advised that to reduce the payback interval, it is possible to design efficient solar photovoltaic–thermal systems to promote the whole system's efficiency and lower the payback interval.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N ASSESSING THE EFFECTIVENESS OF HYBRID SOLAR COLLECTORS SCHEME INIRAQ'S ENVIRONMENT\",\"authors\":\"Jaddoa Ameer A.\",\"doi\":\"10.31489/2023no2/57-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An evaluation of the performance of the Iraqi environments in terms of electrical, thermal and exergy efficiency is introduced in this study. The research is carried out in May 2022, in the Baghdad metropolis. The extraction process of heat from the photovoltaic units which arises from the coolant liquid mass flow rate deem as an essential point. The experimental studies were implemented by absorbing heat energy behind from the photovoltaic cell's surface in insulated conditions and using a cooled water unit. The results indicated that at a mass inflow rate of 0.2 kg/sec, the maximum average total efficiency of the system was recorded 22%. As a result, it is advised that to reduce the payback interval, it is possible to design efficient solar photovoltaic–thermal systems to promote the whole system's efficiency and lower the payback interval.\",\"PeriodicalId\":11789,\"journal\":{\"name\":\"Eurasian Physical Technical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Physical Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2023no2/57-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2023no2/57-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了伊拉克环境在电、热和火用效率方面的性能评估。这项研究于2022年5月在巴格达大都市进行。从光伏单元中提取由冷却剂液体质量流量产生的热量的过程被认为是一个关键点。实验研究是通过在绝缘条件下吸收光伏电池表面的热能并使用冷水机组进行的。结果表明,在0.2千克/秒的质量流入速率下,系统的最大平均总效率记录为22%。因此,为了缩短投资回收期,可以设计高效的太阳能光伏-热力系统,以提高整个系统的效率并降低投资回收期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
N ASSESSING THE EFFECTIVENESS OF HYBRID SOLAR COLLECTORS SCHEME INIRAQ'S ENVIRONMENT
An evaluation of the performance of the Iraqi environments in terms of electrical, thermal and exergy efficiency is introduced in this study. The research is carried out in May 2022, in the Baghdad metropolis. The extraction process of heat from the photovoltaic units which arises from the coolant liquid mass flow rate deem as an essential point. The experimental studies were implemented by absorbing heat energy behind from the photovoltaic cell's surface in insulated conditions and using a cooled water unit. The results indicated that at a mass inflow rate of 0.2 kg/sec, the maximum average total efficiency of the system was recorded 22%. As a result, it is advised that to reduce the payback interval, it is possible to design efficient solar photovoltaic–thermal systems to promote the whole system's efficiency and lower the payback interval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信