隧道场效应管的演化及其在模拟电路中的应用

Q4 Engineering
P. Agopian, J. Martino, E. Simoen, R. Rooyackers, C. Claeys
{"title":"隧道场效应管的演化及其在模拟电路中的应用","authors":"P. Agopian, J. Martino, E. Simoen, R. Rooyackers, C. Claeys","doi":"10.29292/jics.v17i2.631","DOIUrl":null,"url":null,"abstract":"In this work different generations of field effect tunneling transistor (TFET) are evaluated through DC digital and analog figures of merits. For TFET devices the main digital figure of merit is the subthreshold slope (SS), while for analog application the intrinsic voltage gain (AV) is the most important one. For the early generations, that are based on silicon, the SS does not reach values smaller than 60mV/dec at room temperature, however, the AV reaches values up to 80 dB, showing to be promising for analog applications. As the TFETs were being optimized for digital applications and consequently presenting better switching performance, the intrinsic voltage gain moves in the opposite direction. This opposite trend is related to which transport mechanism is predominant for each type of device. While III-V TFETs are more dependent on Band to Band Tunneling (BTBT), silicon devices are more relying on Trap-Assisted Tunneling (TAT). While BTBT allows for faster switching, TAT is less dependent on the drain electric field, so the former favors SS while the latter favors AV. Based on the good analog behavior of silicon channel TFETs, a two-stage operational transconductance amplifier (OTA) was designed with different TFET technologies and the compared results were discussed.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunnel-FET Evolution and Applications for Analog Circuits\",\"authors\":\"P. Agopian, J. Martino, E. Simoen, R. Rooyackers, C. Claeys\",\"doi\":\"10.29292/jics.v17i2.631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work different generations of field effect tunneling transistor (TFET) are evaluated through DC digital and analog figures of merits. For TFET devices the main digital figure of merit is the subthreshold slope (SS), while for analog application the intrinsic voltage gain (AV) is the most important one. For the early generations, that are based on silicon, the SS does not reach values smaller than 60mV/dec at room temperature, however, the AV reaches values up to 80 dB, showing to be promising for analog applications. As the TFETs were being optimized for digital applications and consequently presenting better switching performance, the intrinsic voltage gain moves in the opposite direction. This opposite trend is related to which transport mechanism is predominant for each type of device. While III-V TFETs are more dependent on Band to Band Tunneling (BTBT), silicon devices are more relying on Trap-Assisted Tunneling (TAT). While BTBT allows for faster switching, TAT is less dependent on the drain electric field, so the former favors SS while the latter favors AV. Based on the good analog behavior of silicon channel TFETs, a two-stage operational transconductance amplifier (OTA) was designed with different TFET technologies and the compared results were discussed.\",\"PeriodicalId\":39974,\"journal\":{\"name\":\"Journal of Integrated Circuits and Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29292/jics.v17i2.631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i2.631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文通过直流数字和模拟数据对不同时代的场效应隧道晶体管(ttfet)的优点进行了评价。对于TFET器件而言,主要的数字指标是阈下斜率(SS),而对于模拟应用而言,本征电压增益(AV)是最重要的指标。对于基于硅的早期一代,室温下的SS值不小于60mV/dec,然而,AV值可达80db,显示出模拟应用的前景。由于tfet被优化用于数字应用,因此呈现出更好的开关性能,固有电压增益向相反方向移动。这种相反的趋势与哪种传输机制对每种类型的设备起主导作用有关。III-V tfet更依赖于带到带隧道(BTBT),而硅器件更依赖于陷阱辅助隧道(TAT)。虽然BTBT允许更快的开关,但TAT对漏极电场的依赖性较小,因此前者倾向于SS,后者倾向于AV。基于硅沟道TFET良好的模拟行为,设计了两级操作跨导放大器(OTA),并讨论了不同TFET技术的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunnel-FET Evolution and Applications for Analog Circuits
In this work different generations of field effect tunneling transistor (TFET) are evaluated through DC digital and analog figures of merits. For TFET devices the main digital figure of merit is the subthreshold slope (SS), while for analog application the intrinsic voltage gain (AV) is the most important one. For the early generations, that are based on silicon, the SS does not reach values smaller than 60mV/dec at room temperature, however, the AV reaches values up to 80 dB, showing to be promising for analog applications. As the TFETs were being optimized for digital applications and consequently presenting better switching performance, the intrinsic voltage gain moves in the opposite direction. This opposite trend is related to which transport mechanism is predominant for each type of device. While III-V TFETs are more dependent on Band to Band Tunneling (BTBT), silicon devices are more relying on Trap-Assisted Tunneling (TAT). While BTBT allows for faster switching, TAT is less dependent on the drain electric field, so the former favors SS while the latter favors AV. Based on the good analog behavior of silicon channel TFETs, a two-stage operational transconductance amplifier (OTA) was designed with different TFET technologies and the compared results were discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrated Circuits and Systems
Journal of Integrated Circuits and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
39
期刊介绍: This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信