区域供热系统负荷预测:基于相似日法的深度神经网络模型

IF 2.1 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Mingju Gong, Haojie Zhou, Qilin Wang, Sheng Wang, Peng Yang
{"title":"区域供热系统负荷预测:基于相似日法的深度神经网络模型","authors":"Mingju Gong, Haojie Zhou, Qilin Wang, Sheng Wang, Peng Yang","doi":"10.1080/17512549.2019.1607777","DOIUrl":null,"url":null,"abstract":"ABSTRACT Accurate heat load forecasting is an important issue to ensure the reliable and efficient operation of a district heating system. In this paper, a hybrid model that combines similar day (SD) selection and Deep Neural Networks (DNNs) to construct SD-DNNs model for short-term load forecasting (STLF) is presented. A new Euclidean Norm (EN) weighted by eXtreme Gradient Boosting (XGBoost) is used to evaluate the similarity between the forecasting day and historical days. In this EN, the outdoor temperature, wind force and day-ahead load are simultaneously considered. And eight features are chosen as inputs of the DNNs to predict the heat load. The Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) are used as accuracy evaluation indexes. The experimental results demonstrate that the SD-DNNs model can accurately forecast the heat load.","PeriodicalId":46184,"journal":{"name":"Advances in Building Energy Research","volume":"14 1","pages":"372 - 388"},"PeriodicalIF":2.1000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17512549.2019.1607777","citationCount":"20","resultStr":"{\"title\":\"District heating systems load forecasting: a deep neural networks model based on similar day approach\",\"authors\":\"Mingju Gong, Haojie Zhou, Qilin Wang, Sheng Wang, Peng Yang\",\"doi\":\"10.1080/17512549.2019.1607777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Accurate heat load forecasting is an important issue to ensure the reliable and efficient operation of a district heating system. In this paper, a hybrid model that combines similar day (SD) selection and Deep Neural Networks (DNNs) to construct SD-DNNs model for short-term load forecasting (STLF) is presented. A new Euclidean Norm (EN) weighted by eXtreme Gradient Boosting (XGBoost) is used to evaluate the similarity between the forecasting day and historical days. In this EN, the outdoor temperature, wind force and day-ahead load are simultaneously considered. And eight features are chosen as inputs of the DNNs to predict the heat load. The Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) are used as accuracy evaluation indexes. The experimental results demonstrate that the SD-DNNs model can accurately forecast the heat load.\",\"PeriodicalId\":46184,\"journal\":{\"name\":\"Advances in Building Energy Research\",\"volume\":\"14 1\",\"pages\":\"372 - 388\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17512549.2019.1607777\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Building Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17512549.2019.1607777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Building Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17512549.2019.1607777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 20

摘要

摘要准确的热负荷预测是保证区域供热系统可靠高效运行的重要问题。本文提出了一种将相似日选择(SD)和深度神经网络(DNN)相结合的混合模型,用于构建短期负荷预测(STLF)的SD DNN模型。利用极限梯度提升(XGBoost)加权的一种新的欧氏范数(EN)来评估预测日和历史日之间的相似性。在本EN中,同时考虑了室外温度、风力和日前负荷。并选择八个特征作为DNN的输入来预测热负荷。均方根误差(RMSE)、平均绝对百分比误差(MAPE)和平均百分比误差(MPE)被用作准确性评估指标。实验结果表明,SD-DNNs模型能够准确地预测热负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
District heating systems load forecasting: a deep neural networks model based on similar day approach
ABSTRACT Accurate heat load forecasting is an important issue to ensure the reliable and efficient operation of a district heating system. In this paper, a hybrid model that combines similar day (SD) selection and Deep Neural Networks (DNNs) to construct SD-DNNs model for short-term load forecasting (STLF) is presented. A new Euclidean Norm (EN) weighted by eXtreme Gradient Boosting (XGBoost) is used to evaluate the similarity between the forecasting day and historical days. In this EN, the outdoor temperature, wind force and day-ahead load are simultaneously considered. And eight features are chosen as inputs of the DNNs to predict the heat load. The Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) are used as accuracy evaluation indexes. The experimental results demonstrate that the SD-DNNs model can accurately forecast the heat load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Building Energy Research
Advances in Building Energy Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
4.80
自引率
5.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信