冲积型柱状铁矿床可磨性表征及高效选矿工作指标测定

IF 1.3 4区 工程技术 Q4 CHEMISTRY, PHYSICAL
N. Nzeh, A. Adeleke, P. Popoola
{"title":"冲积型柱状铁矿床可磨性表征及高效选矿工作指标测定","authors":"N. Nzeh, A. Adeleke, P. Popoola","doi":"10.37190/ppmp/170297","DOIUrl":null,"url":null,"abstract":"This study emphasizes on the physicochemical and grindability characteristics and work index of an alluvial formed silica dominated ferro-columbite mineral from Rayfield-Jos minefields in Plateau state, Nigeria. Investigations were also carried out in order to determine the mineralogy of the mineral deposits and most essentially the actual energy consumed during comminution and milling of the mineral so as to achieve the liberation size prior to high efficient mineral processing or beneficiation and the extraction of value metals. The distribution of the mineral particles as well as their sizes was determined, with a mineral liberation size fraction range essentially established as -150+90 µm particle sizes. Mass percentage of each size fraction obtained from PSD analysis conducted before and after comminution was also determined, obtaining 80% passing for both the mineral feeds and comminuted products. Berry and Bruce modified Bond’s work index was therefore obtained, and was determined to be within the range of 2.0414 to 2.5667 kWh/ton. Hence, the energy consumed or required to comminute or grind the Fe-columbite mineral to 80% passing is expected to fall within the range of 0.3613 to 0.4543 kWh. Thus, it could be said that a low milling work index as well as moderately low energy is required for comminution and this can be attributed to the mineralogy, mineral source and alluvial formation of the mineral reserve. Therefore, the grindability/PSD result of the mineral sample indicates that its mineralogy is considered a class of moderately soft mineral type in terms of texture with easy grindability.","PeriodicalId":49137,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grindability characterization and work index determination of alluvial ferro-columbite deposits for efficient mineral processing\",\"authors\":\"N. Nzeh, A. Adeleke, P. Popoola\",\"doi\":\"10.37190/ppmp/170297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study emphasizes on the physicochemical and grindability characteristics and work index of an alluvial formed silica dominated ferro-columbite mineral from Rayfield-Jos minefields in Plateau state, Nigeria. Investigations were also carried out in order to determine the mineralogy of the mineral deposits and most essentially the actual energy consumed during comminution and milling of the mineral so as to achieve the liberation size prior to high efficient mineral processing or beneficiation and the extraction of value metals. The distribution of the mineral particles as well as their sizes was determined, with a mineral liberation size fraction range essentially established as -150+90 µm particle sizes. Mass percentage of each size fraction obtained from PSD analysis conducted before and after comminution was also determined, obtaining 80% passing for both the mineral feeds and comminuted products. Berry and Bruce modified Bond’s work index was therefore obtained, and was determined to be within the range of 2.0414 to 2.5667 kWh/ton. Hence, the energy consumed or required to comminute or grind the Fe-columbite mineral to 80% passing is expected to fall within the range of 0.3613 to 0.4543 kWh. Thus, it could be said that a low milling work index as well as moderately low energy is required for comminution and this can be attributed to the mineralogy, mineral source and alluvial formation of the mineral reserve. Therefore, the grindability/PSD result of the mineral sample indicates that its mineralogy is considered a class of moderately soft mineral type in terms of texture with easy grindability.\",\"PeriodicalId\":49137,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/170297\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/170297","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究重点研究了尼日利亚高原州Rayfield Jos雷区冲积形成的以二氧化硅为主的铁铌矿的物理化学和可磨性特征及功指数。还进行了调查,以确定矿床的矿物学,最重要的是确定矿物粉碎和研磨过程中消耗的实际能量,从而在高效矿物加工或选矿和提取有价值金属之前达到释放尺寸。确定了矿物颗粒的分布及其尺寸,矿物释放尺寸分数范围基本上确定为-150+90µm颗粒尺寸。还测定了从粉碎前后进行的PSD分析中获得的每个粒度级分的质量百分比,获得了矿物进料和粉碎产品的80%通过率。Berry和Bruce修正后的Bond功指数因此得到,并确定在2.0414至2.5667千瓦时/吨的范围内。因此,粉碎或研磨铁铌矿至80%通过所消耗或需要的能量预计将在0.3613至0.4543kWh的范围内。因此,可以说,粉碎需要低的研磨功指数和适度低的能量,这可归因于矿物储量的矿物学、矿物来源和冲积层。因此,矿物样品的可磨性/PSD结果表明,就质地而言,其矿物学被认为是一类易磨的中软矿物类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grindability characterization and work index determination of alluvial ferro-columbite deposits for efficient mineral processing
This study emphasizes on the physicochemical and grindability characteristics and work index of an alluvial formed silica dominated ferro-columbite mineral from Rayfield-Jos minefields in Plateau state, Nigeria. Investigations were also carried out in order to determine the mineralogy of the mineral deposits and most essentially the actual energy consumed during comminution and milling of the mineral so as to achieve the liberation size prior to high efficient mineral processing or beneficiation and the extraction of value metals. The distribution of the mineral particles as well as their sizes was determined, with a mineral liberation size fraction range essentially established as -150+90 µm particle sizes. Mass percentage of each size fraction obtained from PSD analysis conducted before and after comminution was also determined, obtaining 80% passing for both the mineral feeds and comminuted products. Berry and Bruce modified Bond’s work index was therefore obtained, and was determined to be within the range of 2.0414 to 2.5667 kWh/ton. Hence, the energy consumed or required to comminute or grind the Fe-columbite mineral to 80% passing is expected to fall within the range of 0.3613 to 0.4543 kWh. Thus, it could be said that a low milling work index as well as moderately low energy is required for comminution and this can be attributed to the mineralogy, mineral source and alluvial formation of the mineral reserve. Therefore, the grindability/PSD result of the mineral sample indicates that its mineralogy is considered a class of moderately soft mineral type in terms of texture with easy grindability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physicochemical Problems of Mineral Processing
Physicochemical Problems of Mineral Processing CHEMISTRY, PHYSICAL-MINING & MINERAL PROCESSING
自引率
6.70%
发文量
99
期刊介绍: Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy. Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal. Topics of interest Analytical techniques and applied mineralogy Computer applications Comminution, classification and sorting Froth flotation Solid-liquid separation Gravity concentration Magnetic and electric separation Hydro and biohydrometallurgy Extractive metallurgy Recycling and mineral wastes Environmental aspects of mineral processing and other mineral processing related subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信