使用rnn、lstm和gru方法预测银行股价格

Q3 Economics, Econometrics and Finance
Dias Satria
{"title":"使用rnn、lstm和gru方法预测银行股价格","authors":"Dias Satria","doi":"10.35784/acs-2023-06","DOIUrl":null,"url":null,"abstract":"In recent years, the implementation of machine learning applications started to apply in other possible fields, such as economics, especially investment. But, many methods and modeling are used without knowing the most suitable one for predicting particular data. This study aims to find the most suitable model for predicting stock prices using statistical learning with RNN, LSTM, and GRU deep learning methods using stock price data for 4 (four) major banks in Indonesia, namely BRI, BNI, BCA, and Mandiri, from 2013 to 2022. The result showed that the ARIMA Box-Jenkins modeling is unsuitable for predicting BRI, BNI, BCA, and Bank Mandiri stock prices. In comparison, GRU presented the best performance in the case of predicting the stock prices of BRI, BNI, BCA, and Bank Mandiri.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH\",\"authors\":\"Dias Satria\",\"doi\":\"10.35784/acs-2023-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the implementation of machine learning applications started to apply in other possible fields, such as economics, especially investment. But, many methods and modeling are used without knowing the most suitable one for predicting particular data. This study aims to find the most suitable model for predicting stock prices using statistical learning with RNN, LSTM, and GRU deep learning methods using stock price data for 4 (four) major banks in Indonesia, namely BRI, BNI, BCA, and Mandiri, from 2013 to 2022. The result showed that the ARIMA Box-Jenkins modeling is unsuitable for predicting BRI, BNI, BCA, and Bank Mandiri stock prices. In comparison, GRU presented the best performance in the case of predicting the stock prices of BRI, BNI, BCA, and Bank Mandiri.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2023-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2023-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 3

摘要

近年来,机器学习应用程序的实施开始应用于其他可能的领域,如经济学,尤其是投资。但是,在不知道最适合预测特定数据的方法和建模的情况下,使用了许多方法和建模。本研究旨在使用RNN、LSTM和GRU深度学习方法,利用2013年至2022年印尼四(四)家主要银行(即BRI、BNI、BCA和Mandiri)的股价数据,找到最适合使用统计学习预测股价的模型。结果表明,ARIMA Box-Jenkins模型不适合预测BRI、BNI、BCA和Bank Mandiri的股价。相比之下,GRU在预测BRI、BNI、BCA和Bank Mandiri的股价时表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTING BANKING STOCK PRICES USING RNN, LSTM, AND GRU APPROACH
In recent years, the implementation of machine learning applications started to apply in other possible fields, such as economics, especially investment. But, many methods and modeling are used without knowing the most suitable one for predicting particular data. This study aims to find the most suitable model for predicting stock prices using statistical learning with RNN, LSTM, and GRU deep learning methods using stock price data for 4 (four) major banks in Indonesia, namely BRI, BNI, BCA, and Mandiri, from 2013 to 2022. The result showed that the ARIMA Box-Jenkins modeling is unsuitable for predicting BRI, BNI, BCA, and Bank Mandiri stock prices. In comparison, GRU presented the best performance in the case of predicting the stock prices of BRI, BNI, BCA, and Bank Mandiri.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信