Lee H. Dietterich, Nicholas J. Bouskill, Makenna Brown, Biancolini Castro, Stephany S. Chacon, Lily Colburn, Amanda L. Cordeiro, Edwin H. García, Adonis Antonio Gordon, Eugenio Gordon, Alexandra Hedgpeth, Weronika Konwent, Gabriel Oppler, Jacqueline Reu, Carley Tsiames, Eric Valdes, Anneke Zeko, Daniela F. Cusack
{"title":"试验干燥和季节性干燥对四种低地热带森林土壤微生物生物量和养分循环的影响","authors":"Lee H. Dietterich, Nicholas J. Bouskill, Makenna Brown, Biancolini Castro, Stephany S. Chacon, Lily Colburn, Amanda L. Cordeiro, Edwin H. García, Adonis Antonio Gordon, Eugenio Gordon, Alexandra Hedgpeth, Weronika Konwent, Gabriel Oppler, Jacqueline Reu, Carley Tsiames, Eric Valdes, Anneke Zeko, Daniela F. Cusack","doi":"10.1007/s10533-022-00980-2","DOIUrl":null,"url":null,"abstract":"<div><p>Changes in precipitation represent a major effect of climate change on tropical forests, which contain some of the earth’s largest terrestrial carbon (C) stocks. Such changes are expected to influence microbes, nutrients, and the fate of C in tropical forest soils. To explore this, we assessed soil microbial biomass, potential extracellular enzyme activities, and nutrient availability in a partial throughfall exclusion experiment in four seasonal lowland tropical humid forests in Panama with wide variation in precipitation and soil fertility. We hypothesized that throughfall exclusion would reduce microbial biomass and activity and accentuate dry season soil nutrient accumulation, with larger effects in wetter, less drought-resistant forests. We observed a baseline seasonal pattern of decreased microbial biomass and increased extractable dissolved organic C (DOC), total dissolved nitrogen (TDN), nitrate (NO<sub>3</sub><sup>−</sup>), and resin-extractable phosphorus (P) in the dry season, with the strongest patterns for nitrogen (N). However, potential enzyme activities showed no consistent seasonality. In line with seasonal drying, throughfall exclusion decreased soil microbial biomass in the wet season and increased TDN and NO<sub>3</sub><sup>−</sup>, especially in the dry season. In contrast to seasonal drying, throughfall exclusion decreased DOC and did not affect resin-extractable P, but slightly decreased potential phosphatase activities. Potential enzyme activities varied among sites and sampling times, but did not explain much variation in microbial biomass or substrate availability. We conclude that reduced rainfall in tropical forests might accentuate some dry season patterns, like reductions in microbial biomass and accumulation of extractable nutrients. However, our data also suggest new patterns, like reduced inputs of DOC to soils with drying, which could have cascading effects on soil ecological function and C storage.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"161 2","pages":"227 - 250"},"PeriodicalIF":3.9000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-022-00980-2.pdf","citationCount":"3","resultStr":"{\"title\":\"Effects of experimental and seasonal drying on soil microbial biomass and nutrient cycling in four lowland tropical forests\",\"authors\":\"Lee H. Dietterich, Nicholas J. Bouskill, Makenna Brown, Biancolini Castro, Stephany S. Chacon, Lily Colburn, Amanda L. Cordeiro, Edwin H. García, Adonis Antonio Gordon, Eugenio Gordon, Alexandra Hedgpeth, Weronika Konwent, Gabriel Oppler, Jacqueline Reu, Carley Tsiames, Eric Valdes, Anneke Zeko, Daniela F. Cusack\",\"doi\":\"10.1007/s10533-022-00980-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Changes in precipitation represent a major effect of climate change on tropical forests, which contain some of the earth’s largest terrestrial carbon (C) stocks. Such changes are expected to influence microbes, nutrients, and the fate of C in tropical forest soils. To explore this, we assessed soil microbial biomass, potential extracellular enzyme activities, and nutrient availability in a partial throughfall exclusion experiment in four seasonal lowland tropical humid forests in Panama with wide variation in precipitation and soil fertility. We hypothesized that throughfall exclusion would reduce microbial biomass and activity and accentuate dry season soil nutrient accumulation, with larger effects in wetter, less drought-resistant forests. We observed a baseline seasonal pattern of decreased microbial biomass and increased extractable dissolved organic C (DOC), total dissolved nitrogen (TDN), nitrate (NO<sub>3</sub><sup>−</sup>), and resin-extractable phosphorus (P) in the dry season, with the strongest patterns for nitrogen (N). However, potential enzyme activities showed no consistent seasonality. In line with seasonal drying, throughfall exclusion decreased soil microbial biomass in the wet season and increased TDN and NO<sub>3</sub><sup>−</sup>, especially in the dry season. In contrast to seasonal drying, throughfall exclusion decreased DOC and did not affect resin-extractable P, but slightly decreased potential phosphatase activities. Potential enzyme activities varied among sites and sampling times, but did not explain much variation in microbial biomass or substrate availability. We conclude that reduced rainfall in tropical forests might accentuate some dry season patterns, like reductions in microbial biomass and accumulation of extractable nutrients. However, our data also suggest new patterns, like reduced inputs of DOC to soils with drying, which could have cascading effects on soil ecological function and C storage.</p></div>\",\"PeriodicalId\":8901,\"journal\":{\"name\":\"Biogeochemistry\",\"volume\":\"161 2\",\"pages\":\"227 - 250\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10533-022-00980-2.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeochemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10533-022-00980-2\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-022-00980-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effects of experimental and seasonal drying on soil microbial biomass and nutrient cycling in four lowland tropical forests
Changes in precipitation represent a major effect of climate change on tropical forests, which contain some of the earth’s largest terrestrial carbon (C) stocks. Such changes are expected to influence microbes, nutrients, and the fate of C in tropical forest soils. To explore this, we assessed soil microbial biomass, potential extracellular enzyme activities, and nutrient availability in a partial throughfall exclusion experiment in four seasonal lowland tropical humid forests in Panama with wide variation in precipitation and soil fertility. We hypothesized that throughfall exclusion would reduce microbial biomass and activity and accentuate dry season soil nutrient accumulation, with larger effects in wetter, less drought-resistant forests. We observed a baseline seasonal pattern of decreased microbial biomass and increased extractable dissolved organic C (DOC), total dissolved nitrogen (TDN), nitrate (NO3−), and resin-extractable phosphorus (P) in the dry season, with the strongest patterns for nitrogen (N). However, potential enzyme activities showed no consistent seasonality. In line with seasonal drying, throughfall exclusion decreased soil microbial biomass in the wet season and increased TDN and NO3−, especially in the dry season. In contrast to seasonal drying, throughfall exclusion decreased DOC and did not affect resin-extractable P, but slightly decreased potential phosphatase activities. Potential enzyme activities varied among sites and sampling times, but did not explain much variation in microbial biomass or substrate availability. We conclude that reduced rainfall in tropical forests might accentuate some dry season patterns, like reductions in microbial biomass and accumulation of extractable nutrients. However, our data also suggest new patterns, like reduced inputs of DOC to soils with drying, which could have cascading effects on soil ecological function and C storage.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.