{"title":"拉格朗日谱间隙的容许端点","authors":"D. Gayfulin","doi":"10.2140/moscow.2019.8.47","DOIUrl":null,"url":null,"abstract":"We call a positive real number $\\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\\alpha$ such that $\\mu(\\alpha)=\\lambda$. Here $\\mu(\\alpha)$ denotes the Lagrange constant of $\\alpha$ - maximal real number $c$ such that $\\forall \\varepsilon>0$ the inequality $|\\alpha-\\frac{p}{q}|\\le\\frac{1}{(c-\\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.47","citationCount":"0","resultStr":"{\"title\":\"Admissible endpoints of gaps in the Lagrange spectrum\",\"authors\":\"D. Gayfulin\",\"doi\":\"10.2140/moscow.2019.8.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We call a positive real number $\\\\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\\\\alpha$ such that $\\\\mu(\\\\alpha)=\\\\lambda$. Here $\\\\mu(\\\\alpha)$ denotes the Lagrange constant of $\\\\alpha$ - maximal real number $c$ such that $\\\\forall \\\\varepsilon>0$ the inequality $|\\\\alpha-\\\\frac{p}{q}|\\\\le\\\\frac{1}{(c-\\\\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.47\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Admissible endpoints of gaps in the Lagrange spectrum
We call a positive real number $\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\alpha$ such that $\mu(\alpha)=\lambda$. Here $\mu(\alpha)$ denotes the Lagrange constant of $\alpha$ - maximal real number $c$ such that $\forall \varepsilon>0$ the inequality $|\alpha-\frac{p}{q}|\le\frac{1}{(c-\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.