拉格朗日谱间隙的容许端点

Q4 Mathematics
D. Gayfulin
{"title":"拉格朗日谱间隙的容许端点","authors":"D. Gayfulin","doi":"10.2140/moscow.2019.8.47","DOIUrl":null,"url":null,"abstract":"We call a positive real number $\\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\\alpha$ such that $\\mu(\\alpha)=\\lambda$. Here $\\mu(\\alpha)$ denotes the Lagrange constant of $\\alpha$ - maximal real number $c$ such that $\\forall \\varepsilon>0$ the inequality $|\\alpha-\\frac{p}{q}|\\le\\frac{1}{(c-\\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.47","citationCount":"0","resultStr":"{\"title\":\"Admissible endpoints of gaps in the Lagrange spectrum\",\"authors\":\"D. Gayfulin\",\"doi\":\"10.2140/moscow.2019.8.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We call a positive real number $\\\\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\\\\alpha$ such that $\\\\mu(\\\\alpha)=\\\\lambda$. Here $\\\\mu(\\\\alpha)$ denotes the Lagrange constant of $\\\\alpha$ - maximal real number $c$ such that $\\\\forall \\\\varepsilon>0$ the inequality $|\\\\alpha-\\\\frac{p}{q}|\\\\le\\\\frac{1}{(c-\\\\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/moscow.2019.8.47\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2019.8.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果一个正实数$\lamba$属于拉格朗日谱,并且存在一个无理数$\alpha$,使得$\mu(\alpha)=\lambda$,则我们称其为可容许的。这里$\mu(\alpha)$表示$\alpha$-最大实数$c$的拉格朗日常数,使得$\forall\varepsilon>0$不等式$|\alpha-\frac{p}{q}|\le\frac{1}{(c-\varepsilion)q^2}$对于相对素数$p$和$q$有无限多个解。本文建立了拉格朗日谱元可容许的一个充要条件,构造了一个不可容许数的无穷级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Admissible endpoints of gaps in the Lagrange spectrum
We call a positive real number $\lambda$ admissible if it belongs to the Lagrange spectrum and there exists an irrational number $\alpha$ such that $\mu(\alpha)=\lambda$. Here $\mu(\alpha)$ denotes the Lagrange constant of $\alpha$ - maximal real number $c$ such that $\forall \varepsilon>0$ the inequality $|\alpha-\frac{p}{q}|\le\frac{1}{(c-\varepsilon)q^2}$ has infinitely many solutions for relatively prime $p$ and $q$. In this paper we establish a necessary and sufficient condition of admissibility of the Lagrange spectrum element and construct an infinite series of not admissible numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信