支持可持续发展目标的深度学习和地球观测:当前方法、公开挑战和未来机遇

IF 16.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls
{"title":"支持可持续发展目标的深度学习和地球观测:当前方法、公开挑战和未来机遇","authors":"C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls","doi":"10.1109/mgrs.2021.3136100","DOIUrl":null,"url":null,"abstract":"The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.","PeriodicalId":48660,"journal":{"name":"IEEE Geoscience and Remote Sensing Magazine","volume":"10 1","pages":"172-200"},"PeriodicalIF":16.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities\",\"authors\":\"C. Persello, J. D. Wegner, Ronny Hansch, D. Tuia, Pedram Ghamisi, M. Koeva, Gustau Camps-Valls\",\"doi\":\"10.1109/mgrs.2021.3136100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.\",\"PeriodicalId\":48660,\"journal\":{\"name\":\"IEEE Geoscience and Remote Sensing Magazine\",\"volume\":\"10 1\",\"pages\":\"172-200\"},\"PeriodicalIF\":16.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Geoscience and Remote Sensing Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1109/mgrs.2021.3136100\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1109/mgrs.2021.3136100","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 39

摘要

深度学习(DL)模型和地球观测(EO)的协同结合有望在支持可持续发展目标(sdg)方面取得重大进展。新的发展和大量的应用已经在改变人类面对地球挑战的方式。本文回顾了目前用于EO数据的DL方法,以及它们在监测和实现受EO中DL快速发展影响最大的可持续发展目标方面的应用。我们系统地审查案例研究,以实现零饥饿、创建可持续城市、提供租住权保障、减缓和适应气候变化以及保护生物多样性。涵盖了重要的社会、经济和环境影响。当算法和地球数据可以帮助我们努力应对气候危机和支持更可持续发展时,激动人心的时代即将到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities
The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Geoscience and Remote Sensing Magazine
IEEE Geoscience and Remote Sensing Magazine Computer Science-General Computer Science
CiteScore
20.50
自引率
2.70%
发文量
58
期刊介绍: The IEEE Geoscience and Remote Sensing Magazine (GRSM) serves as an informative platform, keeping readers abreast of activities within the IEEE GRS Society, its technical committees, and chapters. In addition to updating readers on society-related news, GRSM plays a crucial role in educating and informing its audience through various channels. These include:Technical Papers,International Remote Sensing Activities,Contributions on Education Activities,Industrial and University Profiles,Conference News,Book Reviews,Calendar of Important Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信