{"title":"与Hankel多维算子相关的高斯卷积和再生核","authors":"B. Amri","doi":"10.1007/s10476-023-0219-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Hankel multidimensional operator defined on]0, +∞[<sup><i>n</i></sup> by </p><div><div><span>$${\\Delta _\\alpha} = \\sum\\limits_{j = 1}^n {\\left({{{{\\partial ^2}} \\over {\\partial x_j^2}} + {{2{\\alpha _j} + 1} \\over {{x_j}}}{\\partial \\over {\\partial {x_j}}}} \\right)} $$</span></div></div><p> where <span>\\(\\alpha = ({\\alpha _1},{\\alpha _2}, \\ldots ,{\\alpha _n}) \\in ] - {1 \\over 2}, + \\infty {[^n}\\)</span>. We give the most important harmonic analysis results related to the operator Δ<sub><i>α</i></sub> (translation operators <i>τ</i><sub><i>x</i></sub>, convolution product * and Hankel transform <i>ℌ</i><sub><i>α</i></sub>).</p><p>Using harmonic analysis results, we study spaces of Sobolev type for which we make explicit kernels reproducing. Next, we define and study the gaussian convolution <span>\\({{\\cal G}^t}\\)</span>, <i>t</i> > 0, associated with the Hankel multidimensinal operator Δ<sub><i>α</i></sub>. This transformation generalizes the classical gaussian transformation. We establish the most important properties of this transformation. In particular, we show that the gaussian transformation solves the heat equation, that is </p><div><div><span>$${\\Delta _\\alpha}(u)(x,t) = {{\\partial u} \\over {\\partial t}}(x,t),\\,\\,\\,\\,\\,(x,t) \\in [0, + \\infty {[^n} \\times ]0, + \\infty [.$$</span></div></div><p>In the second part of this work, we prove the existence and uniqueness of the extremal function associated with the gaussian transformation. We express this function using the reproducing kernels and we prove the important estimates for this extremal function.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":"49 2","pages":"355 - 379"},"PeriodicalIF":0.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The gaussian convolution and reproducing kernels associated with the Hankel multidimensional operator\",\"authors\":\"B. Amri\",\"doi\":\"10.1007/s10476-023-0219-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the Hankel multidimensional operator defined on]0, +∞[<sup><i>n</i></sup> by </p><div><div><span>$${\\\\Delta _\\\\alpha} = \\\\sum\\\\limits_{j = 1}^n {\\\\left({{{{\\\\partial ^2}} \\\\over {\\\\partial x_j^2}} + {{2{\\\\alpha _j} + 1} \\\\over {{x_j}}}{\\\\partial \\\\over {\\\\partial {x_j}}}} \\\\right)} $$</span></div></div><p> where <span>\\\\(\\\\alpha = ({\\\\alpha _1},{\\\\alpha _2}, \\\\ldots ,{\\\\alpha _n}) \\\\in ] - {1 \\\\over 2}, + \\\\infty {[^n}\\\\)</span>. We give the most important harmonic analysis results related to the operator Δ<sub><i>α</i></sub> (translation operators <i>τ</i><sub><i>x</i></sub>, convolution product * and Hankel transform <i>ℌ</i><sub><i>α</i></sub>).</p><p>Using harmonic analysis results, we study spaces of Sobolev type for which we make explicit kernels reproducing. Next, we define and study the gaussian convolution <span>\\\\({{\\\\cal G}^t}\\\\)</span>, <i>t</i> > 0, associated with the Hankel multidimensinal operator Δ<sub><i>α</i></sub>. This transformation generalizes the classical gaussian transformation. We establish the most important properties of this transformation. In particular, we show that the gaussian transformation solves the heat equation, that is </p><div><div><span>$${\\\\Delta _\\\\alpha}(u)(x,t) = {{\\\\partial u} \\\\over {\\\\partial t}}(x,t),\\\\,\\\\,\\\\,\\\\,\\\\,(x,t) \\\\in [0, + \\\\infty {[^n} \\\\times ]0, + \\\\infty [.$$</span></div></div><p>In the second part of this work, we prove the existence and uniqueness of the extremal function associated with the gaussian transformation. We express this function using the reproducing kernels and we prove the important estimates for this extremal function.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":\"49 2\",\"pages\":\"355 - 379\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0219-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0219-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
where \(\alpha = ({\alpha _1},{\alpha _2}, \ldots ,{\alpha _n}) \in ] - {1 \over 2}, + \infty {[^n}\). We give the most important harmonic analysis results related to the operator Δα (translation operators τx, convolution product * and Hankel transform ℌα).
Using harmonic analysis results, we study spaces of Sobolev type for which we make explicit kernels reproducing. Next, we define and study the gaussian convolution \({{\cal G}^t}\), t > 0, associated with the Hankel multidimensinal operator Δα. This transformation generalizes the classical gaussian transformation. We establish the most important properties of this transformation. In particular, we show that the gaussian transformation solves the heat equation, that is
In the second part of this work, we prove the existence and uniqueness of the extremal function associated with the gaussian transformation. We express this function using the reproducing kernels and we prove the important estimates for this extremal function.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.