从相对论到非相对论的Klein-Gordon-Schrödinger系统的渐近一致指数型积分器

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Simon Baumstark, Georgia Kokkala, Katharina Schratz
{"title":"从相对论到非相对论的Klein-Gordon-Schrödinger系统的渐近一致指数型积分器","authors":"Simon Baumstark, Georgia Kokkala, Katharina Schratz","doi":"10.1553/ETNA_VOL48S63","DOIUrl":null,"url":null,"abstract":"In this paper we propose asymptotic consistent exponential-type integrators for the Klein-Gordon-Schrodinger system. This novel class of integrators allows us to solve the system from slowly varying relativistic up to challenging highly oscillatory non-relativistic regimes without any step size restriction. In particular, our first- and second-order exponential-type integrators are asymptotically consistent in the sense of asymptotically converging to the corresponding decoupled free Schrodinger limit system.","PeriodicalId":50536,"journal":{"name":"Electronic Transactions on Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotic consistent exponential-type integrators for Klein-Gordon-Schrödinger systems from relativistic to non-relativistic regimes\",\"authors\":\"Simon Baumstark, Georgia Kokkala, Katharina Schratz\",\"doi\":\"10.1553/ETNA_VOL48S63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose asymptotic consistent exponential-type integrators for the Klein-Gordon-Schrodinger system. This novel class of integrators allows us to solve the system from slowly varying relativistic up to challenging highly oscillatory non-relativistic regimes without any step size restriction. In particular, our first- and second-order exponential-type integrators are asymptotically consistent in the sense of asymptotically converging to the corresponding decoupled free Schrodinger limit system.\",\"PeriodicalId\":50536,\"journal\":{\"name\":\"Electronic Transactions on Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1553/ETNA_VOL48S63\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Transactions on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL48S63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了Klein-Gordon薛定谔系统的渐近一致指数型积分器。这类新型积分器使我们能够在没有任何步长限制的情况下求解从缓慢变化的相对论性到具有挑战性的高振荡非相对论性系统。特别地,我们的一阶和二阶指数型积分器在渐近收敛到相应的解耦自由薛定谔极限系统的意义上是渐近一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic consistent exponential-type integrators for Klein-Gordon-Schrödinger systems from relativistic to non-relativistic regimes
In this paper we propose asymptotic consistent exponential-type integrators for the Klein-Gordon-Schrodinger system. This novel class of integrators allows us to solve the system from slowly varying relativistic up to challenging highly oscillatory non-relativistic regimes without any step size restriction. In particular, our first- and second-order exponential-type integrators are asymptotically consistent in the sense of asymptotically converging to the corresponding decoupled free Schrodinger limit system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
7.70%
发文量
36
审稿时长
6 months
期刊介绍: Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信