BIG-COHEN–MACAULAY通过超积在等特征零中检验理想

IF 0.8 2区 数学 Q2 MATHEMATICS
T. Yamaguchi
{"title":"BIG-COHEN–MACAULAY通过超积在等特征零中检验理想","authors":"T. Yamaguchi","doi":"10.1017/nmj.2022.41","DOIUrl":null,"url":null,"abstract":"Abstract Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra \n$\\mathcal {B}(R)$\n over a local domain R essentially of finite type over \n$\\mathbb {C}$\n . We show that if R is normal and \n$\\Delta $\n is an effective \n$\\mathbb {Q}$\n -Weil divisor on \n$\\operatorname {Spec} R$\n such that \n$K_R+\\Delta $\n is \n$\\mathbb {Q}$\n -Cartier, then the BCM test ideal \n$\\tau _{\\widehat {\\mathcal {B}(R)}}(\\widehat {R},\\widehat {\\Delta })$\n of \n$(\\widehat {R},\\widehat {\\Delta })$\n with respect to \n$\\widehat {\\mathcal {B}(R)}$\n coincides with the multiplier ideal \n$\\mathcal {J}(\\widehat {R},\\widehat {\\Delta })$\n of \n$(\\widehat {R},\\widehat {\\Delta })$\n , where \n$\\widehat {R}$\n and \n$\\widehat {\\mathcal {B}(R)}$\n are the \n$\\mathfrak {m}$\n -adic completions of R and \n$\\mathcal {B}(R)$\n , respectively, and \n$\\widehat {\\Delta }$\n is the flat pullback of \n$\\Delta $\n by the canonical morphism \n$\\operatorname {Spec} \\widehat {R}\\to \\operatorname {Spec} R$\n . As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"251 1","pages":"549 - 575"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BIG COHEN–MACAULAY TEST IDEALS IN EQUAL CHARACTERISTIC ZERO VIA ULTRAPRODUCTS\",\"authors\":\"T. Yamaguchi\",\"doi\":\"10.1017/nmj.2022.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra \\n$\\\\mathcal {B}(R)$\\n over a local domain R essentially of finite type over \\n$\\\\mathbb {C}$\\n . We show that if R is normal and \\n$\\\\Delta $\\n is an effective \\n$\\\\mathbb {Q}$\\n -Weil divisor on \\n$\\\\operatorname {Spec} R$\\n such that \\n$K_R+\\\\Delta $\\n is \\n$\\\\mathbb {Q}$\\n -Cartier, then the BCM test ideal \\n$\\\\tau _{\\\\widehat {\\\\mathcal {B}(R)}}(\\\\widehat {R},\\\\widehat {\\\\Delta })$\\n of \\n$(\\\\widehat {R},\\\\widehat {\\\\Delta })$\\n with respect to \\n$\\\\widehat {\\\\mathcal {B}(R)}$\\n coincides with the multiplier ideal \\n$\\\\mathcal {J}(\\\\widehat {R},\\\\widehat {\\\\Delta })$\\n of \\n$(\\\\widehat {R},\\\\widehat {\\\\Delta })$\\n , where \\n$\\\\widehat {R}$\\n and \\n$\\\\widehat {\\\\mathcal {B}(R)}$\\n are the \\n$\\\\mathfrak {m}$\\n -adic completions of R and \\n$\\\\mathcal {B}(R)$\\n , respectively, and \\n$\\\\widehat {\\\\Delta }$\\n is the flat pullback of \\n$\\\\Delta $\\n by the canonical morphism \\n$\\\\operatorname {Spec} \\\\widehat {R}\\\\to \\\\operatorname {Spec} R$\\n . As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"251 1\",\"pages\":\"549 - 575\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.41\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.41","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

利用超积,Schoutens在$\mathbb {C}$上本质上是有限型的局部区域R上构造了一个大的Cohen-Macaulay (BCM)代数$\mathcal {B}(R)$。我们证明,如果R是正常的,$\Delta $是$\mathbb {Q}$ - $\operatorname {Spec} R$的有效weil除数,使得$K_R+\Delta $是$\mathbb {Q}$ -Cartier,则$(\widehat {R},\widehat {\Delta })$对$\widehat {\mathcal {B}(R)}$的BCM测试理想$\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$与$(\widehat {R},\widehat {\Delta })$的乘子理想$\mathcal {J}(\widehat {R},\widehat {\Delta })$重合,其中$\widehat {R}$和$\widehat {\mathcal {B}(R)}$分别是R和$\mathcal {B}(R)$的$\mathfrak {m}$ -adic补完。$\widehat {\Delta }$是规范态射$\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$对$\Delta $的平回调。作为应用,我们得到了纯环扩展下乘法器理想的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIG COHEN–MACAULAY TEST IDEALS IN EQUAL CHARACTERISTIC ZERO VIA ULTRAPRODUCTS
Abstract Utilizing ultraproducts, Schoutens constructed a big Cohen–Macaulay (BCM) algebra $\mathcal {B}(R)$ over a local domain R essentially of finite type over $\mathbb {C}$ . We show that if R is normal and $\Delta $ is an effective $\mathbb {Q}$ -Weil divisor on $\operatorname {Spec} R$ such that $K_R+\Delta $ is $\mathbb {Q}$ -Cartier, then the BCM test ideal $\tau _{\widehat {\mathcal {B}(R)}}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ with respect to $\widehat {\mathcal {B}(R)}$ coincides with the multiplier ideal $\mathcal {J}(\widehat {R},\widehat {\Delta })$ of $(\widehat {R},\widehat {\Delta })$ , where $\widehat {R}$ and $\widehat {\mathcal {B}(R)}$ are the $\mathfrak {m}$ -adic completions of R and $\mathcal {B}(R)$ , respectively, and $\widehat {\Delta }$ is the flat pullback of $\Delta $ by the canonical morphism $\operatorname {Spec} \widehat {R}\to \operatorname {Spec} R$ . As an application, we obtain a result on the behavior of multiplier ideals under pure ring extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信