反常方程解的节点集

IF 0.2 Q4 MATHEMATICS
Giorgio Tortone
{"title":"反常方程解的节点集","authors":"Giorgio Tortone","doi":"10.6092/ISSN.2240-2829/10367","DOIUrl":null,"url":null,"abstract":"This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The  goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"10 1","pages":"98-109"},"PeriodicalIF":0.2000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nodal set of solutions to anomalous equations\",\"authors\":\"Giorgio Tortone\",\"doi\":\"10.6092/ISSN.2240-2829/10367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The  goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.\",\"PeriodicalId\":41199,\"journal\":{\"name\":\"Bruno Pini Mathematical Analysis Seminar\",\"volume\":\"10 1\",\"pages\":\"98-109\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bruno Pini Mathematical Analysis Seminar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.2240-2829/10367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/10367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文着重于特定退化或奇异方程解的节点集的几何理论分析。由于它们属于Muckenhoupt类A_2,这些算子出现在Fabes、Kenig、Jerison和Serapioni的开创性著作中。特别是,在过去的十年里,由于它们与分数拉普拉斯算子的局部实现有关,它们最近引起了很多关注。我们的目标是本着Hardt、Simon、Han和Lin的开创性著作的精神,一窥这类方程的节点解集的完整理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nodal set of solutions to anomalous equations
This note focuses on the geometric-theoretic analysis of the nodal set of solutions to specific degenerate or singular equations. As they belong to the Muckenhoupt class A_2, these operators appear in the seminal works of Fabes, Kenig, Jerison and Serapioni. In particular, they have recently attracted a lot of attention in the last decade due to their link to the local realization of the fractional Laplacian. The  goal is to get a glimpse of the complete theory of the nodal set of solutions of such equations in the spirit of the seminal works of Hardt, Simon, Han and Lin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信